

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEWAJHAPODHAS OPFAHUSALUNS ПО СТАНДАРТИЗАЦИИ-ORGANISATION INTERNATIONALE DE NORMALISATION

Numerical control of machines — Punched tape fixed block format for positioning and straight-cut machining

First edition – 1973-12-01 **iTeh STANDARD PREVIEW** (standards.iteh.ai)

ISO 1059:1973 https://standards.iteh.ai/catalog/standards/sist/30eae11b-846a-44ba-bf0adbb6fb4a9ed2/iso-1059-1973

UDC 681.327.44 : 681.323 : 621.9-52

Ref. No. ISO 1059-1973 (E)

Descriptors : data processing, numerical control, punched tapes, data layout, coding.

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

Prior to 1972, the results of the work of the Technical Committees were published / F W as ISO Recommendations; these documents are now in the process of being transformed into International Standards. As part of this process, Technical Committee ISO/TC 97, *Computers and information processing*, has received ISO Recommendation R 1059-1969 and found it technically suitable for transformation. International Standard ISO 1059 therefore replaces ISO Recommendation R 1059-1969, which was approved by the Member Bodies of the following 46a-44ba-bf0a-countries : dbb6fb4a9ed2/iso-1059-1973

Iran	Portugal
Israel	Spain
Italy	Sweden
Japan	Switzerland
Netherlands	Turkey
New Zealand	United Kingdom
Poland	U.S.A.
	Israel Italy Japan Netherlands New Zealand

No Member Body expressed disapproval of the Recommendation.

© International Organization for Standardization, 1973 •

Printed in Switzerland

Numerical control of machines — Punched tape fixed block format for positioning and straight-cut machining

1 SCOPE AND FIELD OF APPLICATION

1.1 This International Standard applies to fixed block format punched tapes, with or without tabulation and without word address, for positioning and straight-cut machining; it is intended to

a) recommend application of the rules providing a minimum of uniformity in the manufacture of input media;

b) inform users of numerically controlled machines on the potentialities of control systems.

ISO 1056 Numerical control of machines – Punched tape block formats – Coding of preparatory functions G and miscellaneous functions M.²⁾

ISO 1058, Numerical control of machines – Punched tape variable block format for positioning and straight-cut machining.

ISO 1113, Information processing – Representation of 6and 7-bit coded character sets on punched tape.

ISO 1154, Information processing – Punched paper tape – Dimensions and location of feed holes and code holes.

ISO 1729, Information processing – Unpunched paper tape

1.2 Compliance with the conditions expressed in this K+Specification/IL/V
International Standard does not guarantee interchangeability of media between machines of a site compatible features. The choice of the codes corresponding 3 FORMAT MAKE-UP
to "feed function", "spindle speed function", "preparatory [059:1973]
function", "miscellaneous function", and stool function site complexity of 2/150-1059-1973
functions, it is recommended that ISO 1058 be complied with as far as possible.

1.3 The format characteristics are specified in clause 4 and in annexes C and D.

1.4 The technical terms used in this International Standard are based on the ISO data processing vocabulary¹).

1.5 Tape dimensions, character codes and nomenclature of axes conform respectively to ISO 1154 and ISO 1729, ISO 840 and ISO 1113, and ISO 841.

2 REFERENCES

ISO 840, Numerical control of machines – 7-bit coded character set.

ISO 841, Numerical control of machines – Axis and motion nomenclature.

A fixed format block has a constant length. Consequently, no word can be omitted, even if there is no change in the data with respect to the preceding block. The meaning of a character is defined by its position in the block. The block shall contain no alphabetic character.

3.1.1 A block consists of the following :

3.1.1.1 The "sequence number" word (optional).

3.1.1.2 The "block address" word (optional).

3.1.1.3 The data words.

3.1.1.4 The "end of block" character, showing the end of each block. In addition, the "end of block" character must precede the first block of the program.

3.1.2 The data words must not be repeated within the same block. Only words corresponding to a function provided by the machine are used; their order should be as follows :

¹⁾ In preparation.

²⁾ At present at the stage of draft. (Revision of ISO/R 1056.)

3.1.2.1 The "preparatory function" word.¹)

3.1.2.2 The "dimension" words.

These words should be arranged whenever possible in the following sequence : X, Y, Z, U, V, W, P, Q, R, A, B, C, D, E, as defined in annex B.

3.1.2.3 The "feed function" word or words.

3.1.2.4 The "spindle speed function" word.

3.1.2.5 The "tool function" word.

3.1.2.6 The "miscellaneous function" word.¹⁾

3.2 Words

3.2.1 The length of each specific word and the position of the implicit decimal sign, as defined in the format specification, shall remain constant. Hence, to keep up the afore mentioned length, the relevant number of zeros must be included.

3.2.2 There is no address for the words. Optionally, the "tab" character may be used to facilitate the reading of the manuscript.

3.2.3 The "block address" word shall consist of one (1) digit.

3.2.4 The "dimension" words shall be either co-ordinate dimension words (absolute dimension) or incremental dimension words (relative dimension) according to format specification, and shall contain digital data as follows :

3.2.4.1 The most significant digit of the dimension shall be first.

3.2.4.2 Units

3.2.4.2.1 All linear dimensions shall be expressed in millimetres or inches and decimal fractions thereof.

3.2.4.2.2 All angular dimensions shall be expressed in decimal parts of a revolution or in degrees and decimal parts of a degree; decimal parts of a revolution is recommended practice.

3.2.4.3 Decimal sign

Decimal sign shall not be used, its implicit position being defined by the format specification.

3.2.4.4.1 When the control system allows using absolute dimensions either positive or negative with respect to the origin of the co-ordinate system, the algebraic sign (+ or -) is part of the "dimension" word and shall precede the first digit.

3.2.4.4.2 When the control system only permits use of positive absolute dimensions, the algebraic sign shall be omitted from the "dimension" words.

3.2.4.4.3 When the control system uses incremental dimensions, the algebraic sign (+ or -) is compulsory and shall precede the first digit of each dimension in order to show the direction of motion.

3.2.5 Digital data contained in the non-dimension words are unrestricted. However, it is recommended to comply as much as possible with the following indications :

3.2.5.1 The "sequence number" should consist of three (3) digits.

3.2.5.2 The "preparatory function" should be expressed by a two (2)-digit coded number.1)

3.2.5.3 The "feed function or functions" should be expressed by a coded number, the composition of which is https://standards.iteh.ai/catalog/standards/sss/30eau118-846a-44ba-bf0a-

dbb6fb4a9ed 0-1059-19

3.2.5.4 The "spindle speed function" should be expressed by a coded number, the composition of which is described in annex A.

3.2.5.5 The "tool function" should be expressed by a coded number, the number of digits being specified in the format specification.

3.2.5.6 The "miscellaneous function" should be expressed by a two (2)-digit coded number.1)

4 FORMAT SPECIFICATION

This consists of three sections, as follows :

- format classification shorthand, in accordance with annex C:

- format classification detailed shorthand, in accordance with annex D;

- itemized data of the format contents, which are not subject to standardization. An explanatory note is attached for guidance of users (annex F).

NOTE - Annex E shows an example of a tab fixed block format.

^{3.2.4.4} Sign of linear and angular dimensions

¹⁾ For coding of preparatory and miscellaneous functions, see ISO 1056.

ANNEX A

EXAMPLE OF FEED AND SPINDLE SPEED CODING

It is recommended to comply as much as possible with one of the three following systems of coding. The codes used and the units which are employed are specified in the format specification.

A.1 ARITHMETIC PROGRESSION

(Three- (four- or five-) digit code)

A.1.1 Number

The number is composed of three, four or five digits, the significance of which is as follows :

 the first digit is a decimal multiplier, and has a value A.1.2 Units three (3) greater than the number of digits to the left of Units employed are as follows : the decimal sign of the feed or speed value;

- the subsequent digits are the feed of spindle speed S A.1.2.1 Feeds

rounded to two-, three- or four-digit accuracy.

ISO 1059:10 or linear motions independent of spindle speed : When there are no digits to the stand of stand of stand of sign, dards/sist/inch/min of them/min.bf0athen the number of zeros immediately to the dight of the 2/iso-1059 decimal sign is subtracted from three (3) to provide the value of the first digit.

Example

Feed or spindle speed	Coding	
1728	717	
150,3	615	
15,25	515	
7,826	478	
0,1537	315	
0,01268	213	
0,008759	188	
0,0004624	046	

NOTE - The second digit can never be zero unless all digits are zero.

If the three-digit coded number does not satisfy the degree of control necessary for the process, this number may be expanded to a four (4)- or five (5)-digit number, as necessary, to meet the requirement. This coded number for the "feed function" or the "spindle speed function" is rounded to three (3)-digit accuracy for a four (4)-digit code and rounded to four (4)-digit accuracy for a five (5)-digit code. This must be defined in accordance with format classification detailed shorthand. (See annex D.)

Example

Feed or spindle speed	4-digit coding	5-digit coding
1728	7173	71728
150,3	6150	61503
15,25	5153	51525
7,826	4783	47826
0,1537	3154	31537
0,01268	2127	21268
0,008759	1876	18759
0,0004624	0462	04624

NOTE - The second digit can never be zero unless all digits are zero

For linear motions dependent on spindle speed :

inch/rev or mm/rev.

For threading, tapping or chasing, in the "inch" system :

rev/inch.

For threading, tapping or chasing, in the metric system :

mm/rev.

A.1.2.2 Spindle speeds

For rotary table motion and spindle speed :

rev/min.

A.2 GEOMETRIC PROGRESSION (Two-digit code)

A.2.1 Number

Feed and spindle speed shall be given by a two (2)-digit code with increasing values of feed and spindle speed represented by increasing code numbers. In general, the ratio of any two feeds or spindle speeds in the table represented by two successive code numbers is constant. It is recommended that the coding shown as follows be used.

U	Feed or spindle speed	Code	Feed or spindle speed	Code	Feed or spindle speed	Code
	2 500	68	50,0	34	0 Stop	00
Α	2 800	69	56,0	35	1,12	01
F	3 150	70	63,0	36	1,25	02
•	3 550	71	71,0	37	1,40	03
	4 000	72	80,0	38	1,60	04
F	4 500	73	90,0	39	1,80	05
	5 000	74	100	40	2,00	06
	5 600	75	112	41	2,24	07
F	6 300	76	125	42	2,50	08
•	7 100	77	140	43	2,80	09
	8 000	78	160	44	3,15	10
F	9 000	79	180	45	3,55	11
	10 000	80	200	46	4,00	12
	11 200	81	224	47	4,50	13
	12 500	82	250	48	5,00	14
	14 000	83	280	49	5,60	15
	16 000	84	315	50	6,30	16
A	18 000	85	355	51	7,10	17
DA	20 000	6 86	400	52	8,00	18
	22 400	87	450	53	9,00	19
dar	25 000	88	500	54	10,0	20
	28 000	89	560	55	11,2	21
ISO 10	31 500	90	630	56	12,5	22
og/stand	. 35.500	91 standards	710	57	14,0	23
4a9ed	40,000	92	800	58	16,0	24
((45 000	93	900	59	18,0	25
	50 000	94	1 000	60	20,0	26
	56 000	95	1 1 2 0	61	22,4	27
F	63 000	96	1 250	62	25,0	28
(*	71 000	97	1 400	63	28,0	29
fr	80 000	98	1 600	64	31,5	30
	Rapid	99	1 800	65	35,5	31
т			2 000	66	40,0	32
c			2 240	67	45,0	33

A.2.2 Units

Units employed are as follows :

A.2.2.1 Feeds

inch/min or mm/min.

For linear motions dependent on spindle speed :

inch/rev or mm/rev.

For threading, tapping or chasing, in the "inch" system : rev/inch.

For threading, tapping or chasing, in the metric system : mm/rev.

A.2.2.2 Spindle speeds D.A. For rotary table motion and spindle speed : lardrev/mich.ai) ISO 1059:1973 g/standards/sist/30eae11b-846a-44ba-bf0ata9edA/30-\$YMBOL1C (One-digit code)

Feed and spindle speed shall each be given by a one (1)-digit code. This code selects a spindle speed or feed from those available on the machine.

The value of the spindle speed or feed appropriate to each code shall be detailed in the itemized data.

For linear motions independent of spindle speed :

ANNEX B

SYMBOLS FOR THE WORDS USED IN FORMAT SPECIFICATION

	Symbol	Meaning
	А	Angular dimension about X axis
	В	Angular dimension about Y axis
	С	Angular dimension about Z axis
	D	Angular dimension about special axis or : third feed function ¹⁾
	E	Angular dimension about special axis or : second feed function ¹⁾
	F	Feed function
1	G	Preparatory function
	н	Block address word
i]	[eh] S]	Unassigned Not to be used in positioning and straight-cut systems
	ĸ	+ Unassigned - Siteh . 11
	L	Permanently unassigned
	М	Miscellaneous function
1etter av//	N standarda ital	Sequence number 1973
nups,//		nai/catalog/standards/sist/30eae11b-846a-44ba-bf0a
	P	deptiling motion dimension parallel to X1)
	Q	Tertiary motion dimension parallel to Y ¹⁾
	R	Rapid traverse dimension in the Z axis, or : tertiary motion dimension parallel to Z ¹⁾
	S	Spindle speed function
	Т	Tool function
	U	Secondary motion dimension parallel to X ¹⁾
	V	Secondary motion dimension parallel to Y ¹⁾
	w	Secondary motion dimension parallel to $Z^{(1)}$
	×	Primary X motion dimension
	Y	Primary Y motion dimension
	Z	Primary Z motion dimension

1) When D, E, P, Q, R, U, V, and W are not used as indicated above, they become unassigned, and may be used as necessary for special application.

ANNEX C

FORMAT SPECIFICATION

Format classification shorthand

The format classification shorthand shall consist of groups of characters defined as follows :

C.1 The first group of characters shall contain letters selected as follows :

C.1.1 F for the fixed block format where applied to a positioning system either allowing or not straight-cut machining.¹⁾

C.1.2 T when using "tab" characters.

digitally or symbolically (i.e. stop-dogs) controlled.

C.2.2 The second digit shows the number of motions controlled by the "dimension" words (and not by marks denoting a stop-dog, an indexed setting, etc.).

C.2.1 The first digit shows the number of motions either

C.2.3 The third digit shows the number of simultaneously controlled motions.

TYPICAL EXAMPLE

C.1.3 M for linear dimensions expressed in millimetres The format of a control system for a machine featuring and decimal fractions thereof the standards a vertical spindle head moving on vertical slideways, or **standards a moving quil** in the aforementioned head,

I for linear dimensions expressed in inches and <u>a cross-slide table</u>, decimal fractions thereof. <u>ISO 1059:1973</u>

https://standards.iteh.ai/catalog/stanwillibsiwritten thus845aTM322bf0a-

C.1.4 If need be :

R for angular dimensions expressed in decimal fractions of a revolution

or

D for angular dimensions expressed in degrees and decimal fractions thereof.

C.2 The next group, comprising three digits, denotes the geometrical characteristics of both machine and control system, as follows :

dbb6fb4a9cd7his⁻¹⁰⁵⁹⁻¹⁹⁷ fixed block format positioning (F) control decimal system with tabulation (T), the linear motions of which are expressed in millimetres (M), there being no angular motion.

This machine has three (3) motions controlled by the system (cross-slide, work-table, quill), the head being positioned on the upright by the operator; a table position is digitally defined while the quill's is secured by selecting a preset stop-dog; both (2) table motions are provided by "dimension" words, the system controlling the two (2) motions at the same time.

¹⁾ This possibility is pointed out among the itemized characteristics of the format (see annex F).

ANNEX D

FORMAT SPECIFICATION

Format classification detailed shorthand

The format classification detailed shorthand must specify the words and length thereof that are required by the system, as follows :

D.1 Every "tab" character, if any, shall be symbolized by a full stop (.).

Every "space" character, if any, shall be symbolized by a comma (.).

D.2 The "end of block" character shall be symbolized by iTeh STANDA an asterisk (*).

the right: D.3 Any letter acting to specify a word shall be recorded in the proper sequence.

- No numerical control on Z dimension;

https://standards.iteh.ai/catalog/standards/sist/30eae11b No numerical control on feed function;

D.3.1 The letter specifying a "dimension" word is followed by two (2) digits, the first showing the number of digits ahead of the implicit decimal sign, the other those following the said sign. If the absolute dimensions are always positive, no sign separates this letter from the next number, whereas, if they are either positive or negative, the plus (+) sign is inserted between the letter and the next number; if incremental dimensions are involved, the letter D is written between the letter and the next number.

D.3.2 The letter specifying a non-dimension word is followed by a single digit showing the number of digits in the word.

2/69_//h

- No numerical control on spindle speed function:
- No numerical control on tool function;
- M2 Two-digit miscellaneous function;
- End of block symbol;
 - Shows a tabulation and should appear, where employed, before every word.

NOTE - It should be understood that this format specification comprises the letters denoting the meaning of the words, whereas, in the blocks, these letters are not used because the format is a fixed format.

TYPICAL EXAMPLE

Taking as an example the machine defined in annex C, the format classification detailed shorthand is

N3.G1.X + 32.Y + 32.M2*

The meaning being as follows :

- N3 Three-digit sequence number;
- G1 One-digit preparatory function;
- X + 32 Dimension X, with either + or sign, three digits to the left of the implicit decimal sign, two to the right;
- Y + 32 Dimension Y, with either + or - sign, three (standards.iten.adjgits to the left of the decimal sign, two to

PI

ISO 1059:1973