INTERNATIONAL STANDARD

ISO 25178-71

First edition 2012-12-01

Geometrical product specifications (GPS) — Surface texture: Areal —

Part 71: **Software measurement standards**

Spécification géométrique des produits (GPS) — État de surface: Surfacique — Partie 71: Étalons logiciels **iTeh STANDARD PREVIEW**

(standards.iteh.ai)

ISO 25178-71:2012 https://standards.iteh.ai/catalog/standards/sist/dd71aac8-f4e7-4b5c-abe2-83d165941af1/iso-25178-71-2012

Reference number ISO 25178-71:2012(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 25178-71:2012</u> https://standards.iteh.ai/catalog/standards/sist/dd71aac8-f4e7-4b5c-abe2-83d165941af1/iso-25178-71-2012

COPYRIGHT PROTECTED DOCUMENT

© ISO 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Page

Contents

Forew	vord	iv
Introd	uction	v
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4 4.1 4.2 4.3	Type S software measurement standards General Type S1, reference data Type S2, reference software	. 2 . 2 . 2 . 3
5 5.1 5.2 5.3 5.4	File format for type S1 reference data General Record 1 — Header Record 2 — Data area Record 3 — Trailer	3 3 5 5
6	Software measurement standard certificate	. 6
Annex	A (informative) Examples	7
Anne» Biblio	c B (informative) Relation to the GPS matrix model. graphy ITeh STANDARD PREVIEW	10 12

(standards.iteh.ai)

ISO 25178-71:2012 https://standards.iteh.ai/catalog/standards/sist/dd71aac8-f4e7-4b5c-abe2-83d165941af1/iso-25178-71-2012

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 25178-71 was prepared by Technical Committee ISO/TC 213, Dimensional and geometrical product specifications and verification.

ISO 25178 consists of the following parts, under the general title Geometrical product specifications (GPS) — Surface texture: Areal:

- Part 2: Terms, definitions and surface texture parameters **STANDARD PREVIEW**
- en Part 3: Specification operators
- Part 6: Classification of methods for measuring surface texture
- Part 70: Physical measurement standards ISO 25178-71:2012
- https://standards.iteh.ai/catalog/standards/sist/dd71aac8-f4e7-4b5c-abe2-
- Part 71: Software measurement standards165941af1/iso-25178-71-2012
- Part 601: Nominal characteristics of contact (stylus) instruments
- Part 602: Nominal characteristics of non-contact (confocal chromatic probe) instruments
- Part 604: Nominal characteristics of non-contact (coherence scanning interferometry) instruments
- Part 605: Nominal characteristics of non-contact (point autofocus probe) instruments
- Part 701: Calibration and measurement standards for contact (stylus) instruments

The following parts are under preparation:

- Part 1: Indication of surface texture
- Part 603: Nominal characteristics of non-contact (phase-shifting interferometric microscopy) instruments
- Part 606: Nominal characteristics of non-contact (focus variation) instruments

Introduction

This part of ISO 25178 is a geometrical product specification (GPS) standard and is to be regarded as a general GPS standard (see ISO/TR 14638). It influences the chain link 6 of the chains of standards on surface texture.

The ISO/GPS Masterplan given in ISO/TR 14638 gives an overview of the ISO/GPS system of which this document is a part. The fundamental rules of ISO/GPS given in ISO 8015 apply to this document and the default decision rules given in ISO 14253-1 apply to specifications made in accordance with this document, unless otherwise indicated.

For more detailed information of the relation of this standard to the GPS matrix model, see Annex B.

This part of ISO 25178 is concerned with software gauges (Type S1) and reference software (Type S2). It also defines the SDF file format for type S1 software gauges.

The SURFACE DATA FILE (SDF) format is already used by industry in particular by instrument manufacturers and academia. The SDF file format as defined in this document is a standardized sub-set of the possibilities included in the SDF file format as initially defined in the European Surfstand project and EUR15178. It is envisaged that the SDF file format could evolve (as more experience in its usage and future requirements are identified) later in a version 2.0 with additional fields and possibilities.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 25178-71:2012</u> https://standards.iteh.ai/catalog/standards/sist/dd71aac8-f4e7-4b5c-abe2-83d165941af1/iso-25178-71-2012

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 25178-71:2012</u> https://standards.iteh.ai/catalog/standards/sist/dd71aac8-f4e7-4b5c-abe2-83d165941af1/iso-25178-71-2012

Geometrical product specifications (GPS) — Surface texture: Areal —

Part 71: Software measurement standards

1 Scope

This part of ISO 25178 defines Type S1 and Type S2 software measurement standards (etalons) for verifying the software of measuring instruments. It also defines the file format of Type S1 software measurement standards for the calibration of instruments for the measurement of surface texture by the areal method as defined in the areal surface texture chain of standards, chain link 6.

NOTE Throughout this part of ISO 25178, the term "softgauge" is used as a substitute for "software measurement standard Type S1".

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies tandards.iten.ai)

ISO 5436-2:2001, Geometrical Product Specifications (GPS) — Surface texture: Profile method; Measurement standards — Part 2: Software measurement standards²⁰¹²

https://standards.iteh.ai/catalog/standards/sist/dd71aac8-f4e7-4b5c-abe2-

ISO 16610 (all parts), Geometrical Product Specifications (GPS) 2- Filtration

ISO 17450-2:2012, Geometrical product specifications (GPS) — General concepts — Part 2: Basic tenets, specifications, operators, uncertainties and ambiguities

ISO 25178-2, Geometrical product specifications (GPS) — Surface texture: Areal — Part 2: Terms, definitions and surface texture parameters

ISO 25178-3, Geometrical product specifications (GPS) — Surface texture: Areal — Part 3: Specification operators

ISO/IEC Guide 98-1:2009, Uncertainty of measurement — Part 1: Introduction to the expression of uncertainty in measurement

ISO/IEC Guide 99:2007, International vocabulary of metrology — Basic and general concepts and associated terms (VIM)

3 Terms and definitions

For the purpose of this document, the terms and definitions in ISO 25178-2, ISO 25178-3, ISO 5436-2:2001, the ISO 16610 series, ISO 17250-2, ISO/IEC Guide 98-1 and ISO/IEC Guide 99, and the following apply.

3.1

software measurement standard

reference data or reference software intended to reproduce the value of a measurand with known specification uncertainty in order to verify the software used to calculate the value of a measurand

3.2 CHAR[n] array of n ASCII characters

3.3

BYTE

1-byte (8-bit) representation of an ASCII character

3.4

UINT16

2-byte representation of an unsigned integer

NOTE 1 Unsigned integers have a minimum value of 0 and a maximum value of 65 535.

NOTE 2 The less significant bytes are stored in lower memory addresses; the more significant bytes are stored in higher memory addresses.

3.5

INT16

2-byte representation of a signed integer

NOTE 1 Short integers have a minimum value of -32 768 and a maximum value of +32 767.

NOTE 2 The less significant bytes are stored in lower memory addresses; the more significant bytes are stored in higher memory addresses.

3.6

INT32

4-byte representation of a signed integer

NOTE 1 Long integers have a minimum value of +2 147 483 648 and a maximum value of +2 147 483 647.

NOTE 2 The less significant bytes are stored in lower memory addresses; the more significant bytes are stored in higher memory addresses.

3.7

<u>ISO 25178-71:2012</u>

DOUBLE 8-byte representation consisting of a sign bit an 11-bit binary exponent, and a 52-bit mantissa, plus the implied high-order 1 bit

NOTE 1 Double precision float have an approximate range of \pm 2,22e-1022 to \pm 2,22e+1023.

NOTE 2 The less significant bytes are stored in lower memory addresses; the more significant bytes are stored in higher memory addresses.

NOTE 3 See the IEEE 754-1985 Standard for binary floating-point arithmetic.

4 Type S software measurement standards

4.1 General

These measurement standards are designed to verify the measuring instrument's software (i.e. filter algorithms, parameter calculation, etc.).

The content of a measurement standard shall be considered a scale limited surface (i.e. an S-F surface or an S-L surface). No part of the content of a measurement standard shall be considered form and thus, no form removal shall be undertaken on a measurement standard prior to presenting it to the software being tested.

4.2 Type S1, reference data

This type of measurement standard is a computer data file that contains a digital representation of a scale limited surface in a suitable recording medium.

Type S1 reference data are used to test software by inputting them as data into the software under test/calibration and comparing the results from the software under test with the certified results from the calibration certificate of the softgauge.

NOTE The certified results for mathematically designed synthetic data can often be calculated directly without the need for certification by Type S2 measurement standards.

4.3 Type S2, reference software

These measurement standards are reference software. Reference software consists of traceable computer software against which software in a measuring instrument can be compared.

NOTE 1 Traceable here means a traceable chain of comparisons, with uncertainty, back to a mathematically designed synthetic data whose results can be calculated directly.

Type S2 reference software are used to test software by inputting a common data set into the software under test/calibration and the reference software and comparing the results from the software under test with the certified results from the reference software. Reference software values shall be traceable.

NOTE 2 Type S2 measurement standards can also be used to certify type S1 reference data.

5 File format for type S1 reference data

5.1 General

The file extension of this file protocol is SDF. The file protocol for the softgauge is divided into three separate sections

or records. For implementation of the ASCII and BINARY representations of an SDF data format, see Annex A.

NOTE For the purposes of this document, a right-handed coordinate system is assumed (see ISO 25178-2). Looking from the top, the first point in the data file is in the top left corner.

https://standards.iteh.ai/catalog/standards/sist/dd71aac8-f4e7-4b5c-abe2-

5.2 Record 1 — Header 83d165941af1/iso-25178-71-2012

The header contains general information about each specific measurement. The record is composed of various "fields" in which the information is coded.

The BINARY format consists of fixed length fields defined in Table 1.

Except for the version number, the ASCII format, for the header, consists of a series "keyword = value of field" where the keyword is the ASCII field name given in Table 1.

5.2.1 Version number

The version of a softgauge file format is an array of 8 characters formatted the following way: "aISO-1.0" for the ASCII file format or "bISO-1.0" for the BINARY file format. Future evolutions of this format will modify the version number, such as "-2.0".

5.2.2 Measurement instrument manufacturer's identifier

The identifier includes the source of the data and might also include hardware and software identifiers.

5.2.3 Original creation date and time

This twelve-character field (DDMMYYYYHHMM) stores the date and time that the measurement was completed. Redundant separator characters are not stored but clearly zero padding of fields is required (i.e. 0307 for 3 July not 37).

5.2.4 Last modification date and time

This twelve-character field (DDMMYYYHHMM) stores the date and time that the SDF file was last modified.

5.2.5 Number of points per profile, M

The maximum number of points per profile (along the *x*-direction) shall not exceed one UINT16 of storage (65535).

5.2.6 Number of profiles or traces, N

The maximum number of profiles (along the *y*-direction) or traces shall not exceed one UINT16 of storage (65535). If N = 1, the data can be loaded as a profile; however, its size is limited to 65 535 points.

5.2.7 X, Y and Z axis scale factors

The three scaling factors provide scaling to the standard unit of the meter. The *X*-scale is the sampling interval along the *x*-direction, the *Y*-scale is the profile spacing along the *y*-direction, and the *Z*-scale is the quantisation step along the *z*-direction. Thus, an *X*-scale, *Y*-scale or *Z*-scale value of 1,00 E-6 represents a sample spacing of 1 μ m.

5.2.8 Z axis resolution

The *Z* axis resolution specifies the quantisation steps in the *z*-direction in the digital data. After certain processing operations (e.g. removal of datum), the data type may have changed or have been re-scaled such that the original quantized data has been re-quantised. Thus, the inclusion of this value enables the user to be aware of the original base resolution of the measurement instrument. The units of the resolution value are in metres. If the value is unknown, this field should be set to a negative number, e.g. -1.

(standards.iteh.ai)

5.2.9 Compression type

This field normally defines the type of compression used for the data. "NO COMPRESSION" shall be used. Therefore, this field value is: 0. 83d165941afL/iso-25178-71-2012

5.2.10 Data type

This field defines the base data type used for storage. The field value 5 is for data type INT16; 6 is for data type INT32; 7 is for data type DOUBLE.

Other data types that may have been used in prior definitions of the SDF format are not allowed.

5.2.11 Checksum type

This field defines the type of checksum used for the data. "NO CHECKSUM" shall be used. Therefore, this field value is: 0.

Table 1 gives header description of these fields.

Information	ASCII Field Name	BINARY Data Type	Binary Length (BYTES)
Version Number	N/A	CHAR[8]	8
Manufacturer's ID	ManufacID	CHAR[10]	10
Creation Date and Time	Create Date	CHAR[12]	12
Last modification Date and Time	ModDate	CHAR[12]	12
Number of points per Profile (<i>x</i>)	NumPoints (X)	UINT32	2
Number of Profiles (y)	NumProfiles (Y)	UINT32	2
X-Scale	X-scale	DOUBLE	8
Y-Scale	Y-scale	DOUBLE	8
Z-Scale	Z-scale	DOUBLE	8
Z-Resolution	Z-resolution	DOUBLE	8
Compression Type	Compression	BYTE	1
Data Type	Data type	BYTE	1
Checksum Type	Check Type	BYTE	1
		TOTAL	81

Table 1 — Fields for Record 1

5.3 Record 2 – Data area STANDARD PREVIEW

5.3.1 The data area of the data file contains the coded height information of the surface for the number of points, *M*, and the number of profiles, *N*. The actual height values (i.e. in metres) are obtained by scaling the coded values by the *Z*-scale factor defined in the file header. The data area contains the topographic data in a serial fashion. Profiles are stored successively in the order of their position in the *y*-direction.

83d165941af1/iso-25178-71-2012

NOTE The *x*-data are identified with the rows in the data file and the *y*-data identified with the columns in the data file.

5.3.2 The identification of bad and missing data points is achieved by setting them to the minimum value for the particular data type used, within the data range which is not allowable for any valid data points (e.g. value = -2147483648 for INT32 and value = NAN for DOUBLE). In ASCII format, the string "BAD" will be used.

Treatment of "bad" data: Certain topography measurement systems, as a consequence of the measurement process, produce data points within the complete measurement map that are invalid. These data points may be referred to as "bad" data.

Treatment of "missing" data (dropouts): Certain topography measurement systems, as a consequence of the measurement process, produce data points within the complete measurement map that have no value (i.e. the values are missing). These data points may be referred to as "missing" data.

5.4 Record 3 — Trailer

The trailer part of the data file contains historical information that is associated with a particular measurement. For example, when a measurement is made, information such as the operator's name, measurement conditions, and sample specification might be stored with the data file. Also operator information applied to the data file such as filtering, data inversion, and other process parameters may be attached to the data file. Any other information which the owner of the data believes would be of use and which is not already stored in the header could also be written in the trailer. In order to maintain flexibility of extendibility, it is important that the trailer be of variable length and, for simplicity, exist at the end of the data file. The trailer is thus stored at the end of the files as a series of CHARACTER values.

NOTE It is suggested that a tagged format be used (as XML format) for information stored in this section.