°
w SLOVENSKI STANDARD

SIST ES 203 790 V1.2.1:2020
01-julij-2020

Metode za preskusanje in specificiranje (MTS) - 3. razli¢ica zapisa preskusanja in
krmiljenja preskusov - RazSiritev nabora jezikov TTCN-3: objektno orientirane
lastnosti

Methods for Testing and Specification (MTS) - The Testing and Test Control Notation
version 3 - TTCN-3 Language Extensions: Object-Oriented Features

Ta slovenski standard je istoveten z: ETSIES 203 790 V1.2.1 (2020-05)

ICS:

35.060 Jeziki, ki se uporabljajo v Languages used in
informacijski tehniki in information technology
tehnologiji

SIST ES 203 790 V1.2.1:2020 en

2003-01.Slovenski institut za standardizacijo. RazmnoZevanje celote ali delov tega standarda ni dovoljeno.

SIST ES 203 790 V1.2.1:2020

iTeh STANDARD PREVIEW
(standards.iteh.ai)

SIST ES 203 790 V1.2.1:2020
https/standards.iteh.ai/catalog/standards/sist/9d05b366-3c41-4d4b-8e55-
8d93ed82153/sist-es-203-790-v1-2-1-2020

ETS| ES 203 790 V1.2.1 (2020-05)

Methods for TestinE and ?ﬁecification (MTS);

The Testing and' Test Notation'version 3;
TTCN-3 Language Extensions:©bject-Oriented Features

SIST ES 203 790 V1.2.1:2020
https7//standards.iteh.ai/catalog/standards/sist/9d05b366-3c4 1-4d4b-8eS5-
8d93ed82153/sist-es-203-790-v1-2-1-2020

2 ETSI ES 203 790 V1.2.1 (2020-05)

Reference
RES/MTS-203790-O0Fv1.2.1

Keywords
language, TTCN-3

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 493 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Saus-Rréfecture de Grasse (06) N° 7803/88

Important notice

The present, document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ |ogo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

ETSI

3 ETSI ES 203 790 V1.2.1 (2020-05)

Contents

Intellectual Property RIGNES..........oi it e e s b b e e 5
01 Yo (o PSS 5
MoOdal VErDS EMINOIOQYciveiuieieieeie sttt st e e s re s re e aesbeeaaesbeereenseaaeenseseesneenseseesseensessens 5
1 o0 0L SR 6
2 L= £ 101 S 6
21 NOIMBLIVE FEFEIENCES ... ceeeeeeeiesie ettt ettt et et et e ee st e besee et e s aeeseeae e e enteseeebesaeebeeneensenseseesbesaeesesneeneensens 6
22 INfOrMELIVE FEFEIENCES. ...ttt sttt ettt e ae et e e e e se e besaeeae et enseneeseesbesaeeresneeneeneens 6
3 Definition of terms, symbols and abbreviations............cccceeeiiieece e 7
31 LIS (07PN 7
3.2 Y 1210 S 7
3.3 ADDIEVIBLIONS ...ttt et b e a et e e e e sb e e b e bt ehe e R e e e e b sheeb e e Rt e Rt et e e e bt sheebeeneeneennen 7
4 Package conformance and COMPELTDIHTTYooereieiirei e 7
5 Package Concepts for the COre LanQUEJE.ccvecviieeiie ittt sae e nesne et s ne e e enes 8
5.0 LT 0T SRR 8
51 L= LSS SSY= 0 o @ o] <ok S 8
510 GBINENEL ...ttt h b b e e R R R R R e e E e R e R e R e R e Rt b e e At e n e e R e R e be Rt ehe e enne s 8
511 ClBSSES ..ttt ettt b e b ekt he R R e E e Ee R R e SRR e e RE e R e e R e R e Rt Reeh £ e aeen e e R e aR e be Rt ehe e e enne s 8
51.1.0 LT o1 -SSR 8
51.1.1 SCOPE NUIES &1 B b B L A BB e T T e T L e T T Je e 9
5112 ADSraCt Classes. . . e 9
51.1.3 EXternal Classes.........ooferdhurmenen selh smmermansdl s o sen em e ssmm ot B eeeeneeneenieseesteseeeneeneeneeneeseeseeseeseesseeneensesenns 10
5114 [T g Fo O = 1SS = S S vttt susutosriostson RS PSRRSSN 10
5115 (00 U o0 SRR 11
51.1.6 Constructor invocation........xkal b 25 20N L2 LA 12
5117 Destructarss/standards.teh avcatalog/standards/sist/Ad(050306-3¢4.1:4d40:-8€20 i 13
5118 Methods.................... 8dRQ3ed82£53/sist=8:203-790:1 22122020 o ee et 13
5119 MELNOA INVOCELION ...ttt et e bbbt ae et e b e b e e e e e besaeeb e e e enneneen 14
5.1.1.10 RV T oL OSSO 14
51111 BUITT-TN ClBSSES ...ttt b bbbt b e s b bt s bt eb e e bt e s e e e et e s besbeeb e e e ennennea 14
51112 INESLEA CIASSES ...ttt ettt ettt sttt sttt s e st et esa e st e beseeseebesae s e et e see e ebe e ebesbe e ebesbeneesenbesennens 14
512 (@ 0] ox £ SO SPPTSPPSN 15
5.1.20 LT 07 SRR 15
5121 L@ 10T £ 3 1T o TSP TT PP URPRR 15
5122 ODJECE REFEIEINCES ...ttt b et b bbbt b e et bt s bt b e e b nn e enis 15
51.2.3 LU= 1= o= P SRRSSN 16
51.24 SEIECE ClaSS-SEAEEMENT........c.eeeeeeee ettt e e st e st e besaeetesaeese e st eneeeeseesbesneeneeneeneeneens 16
5125 Of -operator (Dynamic Class DiSCrimiNation)coereererieererieesiesiee st ssese e esees 16
5126 L0 1] o ISR PTTRR 17
5.2 (= (0] 8 =0 | 11 oo 17
520 (C= 0T o OSSP PSPPSN 17
521 Extensionto ETSI ES 201 873-1, clause 16.1.0 (FUNCLIONS)cceecieeieriieiie e cee e 17
5.2.2 Extensionto ETSI ES 201 873-1, clause 16.1.3 (External FUNCLIONS)cccceevvvienienieseee e 18
523 Extensionto ETSI ES 201 873-1, clause 16.1.4 (Invoking functions from specific places).........cc.cceeu...... 18
524 Extension to ETS| ES 201 873-1, clause 16.2 (AISLEDS)......cvrerieerereesie et 18
525 Extension to ETS| ES 201 873-1, clause 16.3 (TESL CASES)eveuerrereeirierieesie ettt 19
526 Extensionto ETS| ES 201 873-1, clause 18 (Overview of program statements and operations) 19
527 Extension to ETS| ES 201 873-1, clause 19 (Basic program StatemMents)ccceeevereeeneneeienesesesieseenenns 21
6 TRI EXtensionS fOr the PaCKagEcooviiiiiee ettt st s ne e 24
6.1 Extensionsto clause 5.3 of ETSI ES 201 873-5 Datainterface.........ccooveeeieeiine i 24
6.2 Extensionsto clause 5.6.3 of ETSI ES 201 873-5 Miscellaneous Operationscceceeveereerieeniesseesseeseennns 25
6.3 Extensionsto clause 6 of ETSI ES 201 873-5 Java™ language Mapping..........ccceeeeveueeeeereeeseeeeeeeeeseeenenes 26
6.4 Extensionsto clause 7 of ETSI ES 201 873-5 ANSI C language MapPing.......ccccecveeveeeeeeeseenieeseeseeseeseennns 28
6.5 Extensionsto clause 8 of ETSI ES 201 873-5 C++ language MappPing..........coeerereeeruermeerenseesseseeesseseeeses 28

ETSI

4 ETSI ES 203 790 V1.2.1 (2020-05)

6.6 Extensionsto clause 9 of ETSI ES 201 873-5 C# language MapPiNgc.coereeeereereeeriermeesesseeseeseeessesseeses 29
7 TCl EXtensionS for the PaCKagEcoviiuiie ettt st et s ne e 30
7.1 Extensionsto clause 7.2.2.1 of ETSI ES 201 873-6 Abstract TTCN-3 datatypes and values...........cc.ce.e...... 30
7.2 Extensionsto clause 7.2.2 of ETSI ES 201 873-6 Abstract TTCN-3 datatypesand values..........ccccecvveueenee 30
7.3 Extensionsto clause 7.2.2.2.0 of ETSI ES 201 873-6 BaSIC FUIESc.coieiiiiiriiiieeeeee e 31
74 Extensionsto clause 7.2.2.2 of ETSI ES 201 873-6 Abstract TTCN-3 VAlUES..........cccevereriieienineneseeeees 32
75 Extensionsto clause 7.3.4.1 of ETSI ES 201 873-6 Abstract TCI-TL provided........c.ccccoevvvvevieeneeieniesee e 33
76 Extensionsto clause 8 of ETSI ES 201 873-6 Java™ language Mapping..........ccceeeeveeeeeeereeeseeeeeeeeeseeenenes 35
7.7 Extensionsto clause 9 of ETSI ES 201 873-6 ANSI C language Mapping.........cccoeeerereeersenmeerieseeesesseneenes 37
7.8 Extensionsto clause 10 of ETS| ES 201 873-6 C++ |anguage Mapping........ccccerereereruermeesserseesiesseesesseneenes 39
7.9 Extensionsto clause 11 of ETS| ES 201 873-6 W3C XML MaPPiNg......ccccrveeereriineeerinieeniesieesieseeesieseeeens 41
7.10 Extensionsto clause 12 of ETS| ES 201 873-6 C# language MapPingcoeerereeeruereeesenseesseseeesseseeesns 42
8 XTRI Extensions for the Package (OPLtioNal)..........coviiiirireneieeeeesesese e 44
8.1 Changesto clause 5.6.3 of ETSI ES 201 873-5 Miscellaneous Operations...........ccovcveveeveereeceeeveseesieesene e 44
8.2 Extensionsto clause 6 of ETSI ES 201 873-5 Java™ language Mapping..........ccceeeeeereeeeereeesereeeeereeseeeenenes 46
8.3 Extensionsto clause 7 of ETSI ES 201 873-5 ANSI C language MapPing.......ccccecveeveeerreeseesieesesseeseeseesnns 46
84 Extensionsto clause 8 of ETSI ES 201 873-5 C++ language MapPing.......c.ccceeveerreerieeeeseeseeseeseeseessessessees 47
85 Extensionsto clause 9 of ETSI ES 201 873-5 C# language MapPiNgc.coereeeereereeeruenmeessesseeseesseesseseeeses 47
Annex A (normative): BNF and StatiC SEMAaNTICS.......coovreriieriesie e 48
Al EXtensionStO TTCN-3 terMINGAIS.......ccciiiieieieee sttt see sttt e e s e e sreeaeseeeneesseneesreeneenneens 48
A.2 Modified TTCN-3 syntax BNF PrOQUCTIONScoueeeirininiisiesiesie et 49
A.3 Additional TTCN-3 syntaX BNF pProduCLiONS..........ccecieiiiieiieie ettt sne e 50
Annex B (normative): Standard Collections.. . s i L 52
B.1 TheTTCN3 standard_collectionsmodule. &l LS o Ll o o Gl e 52
B.1.0 LC T o1 -SSP 52
B.1.1 TE COlECHTION ClESS ... b e3v 1o 3322 TR ExEy 440+ 53 54 335 (3w e bt smtebeemeemeeneene et e naeebeemeense b e sbenbesneene e e ennees 53
B.1.2 TE LISt ClaSS. 1. neihnrmnssssrnstessnnsieses smnsrnsivesssmsas sesionsoses s s sd 3 Koesesas e ms i e o da wn 4 KE 2 1e eseeneansessnssessesneeseeneensenes 53
B.1.3 THE LINKEOLISE CIASS ... vecon saryer sesmomsmines gaeesseseenpaess xmsgos es s sepeemswpmaeyrasesseensessessessessesssssesneensessessessesseeseensensenes 53
B.14 I LT O TN T o =L 54
B.1.5 The PriorityQUEUE CLESSc.couiiieiiitereeieete ettt b bbbt b e b et bt s b e e eb e s e et eb e s b e e eb e sbeneeneebesneneas 54
B.1.6 QI LC S = oo = R 55
B.1.7 The RINGBUTEN ClESS......uiiiiiie ittt ettt et e et e et e sr e s teesteeteeneesaeesaeesseenseenseeneeenaenseesrens 55
B.1.8 I (Sl oS 1Y o Tt SRS 56
B.1.9 TE SEE CLASS. ...ttt b bt h e bt b e b e e h b e Rt b e e e e e R e b e bRt ehe e re e 57
0 0 O T I 0 T=] (= o0 o o = TS 57
B.L.11 THEILEIEIOr ClASS.....icte ittt ettt h et s e bbbt h et e b s e e bt s bt ee e eb e s Rt e he e e e e e nbesbeebeeneenn e e ennas 57
L 11 (TP TP PR PRPRPRTROTN 58

ETSI

5 ETSI ES 203 790 V1.2.1 (2020-05)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

ThisETSI Standard (ES) has been produced by/,ET.SIyTiechnicaliCommittee Methods for Testing and Specification
(MTS).

Theuse of underline (additional text) and strike through'(deleted text) highlights the differ ences between base
document and extended documents.

The present document relates to the multi-part standard ET Sl ES 201 873 covering the Testing and Test Control
Notation version 3, asidentified in ETS| ES 201.873-1 [1].

Modal verbs terminology

In the present document "shall”, "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" areto beinterpreted as described in clause 3.2 of the ETS| Drafting Rules (Verba forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

6 ETSI ES 203 790 V1.2.1 (2020-05)

1 Scope

The present document defines the support for object-oriented featuresin TTCN-3. TTCN-3 can be used for the
specification of all types of reactive system tests over avariety of communication ports. Typical areas of application are
protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module
testing, testing of OMG CORBA based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can
be used for many other kinds of testing including interoperability, robustness, regression, system and integration testing.
The specification of test suites for physical layer protocols is outside the scope of the present document.

TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as concepts in the
TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or
usages of TTCN-3.

While the design of TTCN-3 package has taken into account the consistency of a combined usage of the core language
with a number of packages, the concrete usages of and guidelines for this package in combination with other packages
is outside the scope of the present document.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (includingany @amendments) applies.

Referenced documents which are not found:to bepublicly-avail ablein the'expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in-this-clause were valid-at-the time of publication, ETSI cannot guarantee
their long termvalidity!

The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”.

2] ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics'.

[3] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[4] ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

ETSI

7 ETSI ES 203 790 V1.2.1 (2020-05)
[i.2] ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[i.3] ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML schemawith TTCN-3".

[i.4] ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, theterms given in ETSI ES 201 873-1 [1], ETSI ES 201 873-4 [2],
ETSI ES 201 873-5[3] and ETSI ES 201 873-6 [4] apply.

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document;the abbreviations givenin ETS| [ES201 873:1.[1], ETSI ES 201 873-4 [2],
ETSI ES 201 873-5[3] and ETSI ES 201 873-6 [4] apply.

4 Package conformance and'compatibility
The package presented in the present doctment is identified by thé package tag:
"TTCN- 3: 2018 oj ect-Oiented features" -tobeused with modules complying with the present document.

For an implementation claiming to conform to this package version, all features specified in the present document shall
be implemented consistently with the requirements given in the present document and in ETSI ES 201 873-1 [1] and
ETSI ES 201 873-4[2].

The package presented in the present document is compatible to:

° ETSI ES201 873-1[1], version 4.10.1;

ETSI ES201 873-4 [2], version 4.6.1;
e ETSIES201873-5[3], version 4.8.1;
° ETSI ES201 873-6 [4], version 4.9.1;
e ETSIES201873-7[i.1];

e ETSIES201873-8[i.2);

e ETSIES201873-9[i.3];

e ETSIES201873-10[i.4].

If later versions of those parts are available and should be used instead, the compatibility to the package presented in the
present document has to be checked individually.

ETSI

8 ETSI ES 203 790 V1.2.1 (2020-05)

5 Package Concepts for the Core Language

5.0 General

This package defines objec-oriented features for TTCN-3, i.e. it extends the TTCN-3 core language (ETSI
ES 201 873-1 [1]) with well-known concepts from object-oriented programming and modelling languages. This
package realizes the following concepts:

. classes (i.e. class definition, scope rules, abstract and external classes, refinement, constructors, destructors,
methods, visibility, and built-in classes);

. objects (i.e. ownership, object references, select class-statement, dynamic class discrimitation and casting);
and

. exception handling (i.e. ability to define exception handling for functions, external functions, altsteps and test
cases).

5.1 Classes and Objects

51.0 General

This clause introduces the concepts of class types and their values, called objects as well as the operations allowed to be
applied to these objects.

51.1 Classes

5.1.1.0 General

Syntactical Structure

[public | private]

type [external] class [@inal | @bstract]
Identifier [extends O assType]
[runsOnSpec] [systenSpec] [ntcSpec]

“{" {d assMenber} "}"

[finally StatenentBl ock]

Semantic Description

A classis atype where the values are called objects. A class can declare fields (variables, constants, templates, timers,
classes) and methods as its members. Each member name inside the class shall be unique, there is no overloading. The
private and protected fields and methods are only accessible by the methods of the class, while the public members of
the class can be accessed also from behaviour not defined in the class. The private members of the class can be accessed
directly only by members of the classitself. All members which are neither private nor public are protected and can also
be accessed by members of subclasses.

All fields may be declared without initializer, even const and template fields.

A class can extend another class. The extended classis called the superclass, while the extending classis called the
subclass. The resulting type of a class definition is the set of object instances of the classitself and all instances of its
direct or indirect subclasses. A subclassis a subtype of its direct and indirect superclasses and its object instances are
type compatible with them. If a class does not explicitly extend another class type, it implicitly extends the root class
type obj ect . Thus, al classes are directly or indirectly extensions of the obj ect class.

A class can have optional runs on, mtc and system clauses. This restricts the type of component context that can create
objects of that class and all methods of this class. If a class does not have one of these clauses, it inheritsit from its
superclass, if the superclass has one. If the superclass has or inherits a runs on, mtc or system clause, the subclass may
declare each of these clauses with a more specific component type than the one inherited. The function members of
classes shall not have runs on, system or mtc classes but inherit them from their surrounding class or its superclasses.

ETSI

9 ETSI ES 203 790 V1.2.1 (2020-05)

Restrictions
a) Templates are not allowed for classtypes.
b) Passing of object references to the create operation of a component type or afunction started on another
component is not allowed.
¢) No subtyping definition is allowed for class types viathe normal subtype definition.
d) Nolocal/globa constants or module parameters of class type or containing class type fields or elements are
allowed.
e) Classtype cannot be the contained value of an anytype value.
f) Thefunctions of aclass shall not have a runs on, mtc or system clause.
g) Therunson type of aclass shall be runs on compatible with the runs on type of the behaviour creating a class.
h) The runs on type of aclass shall be runs on compatible with the runs on type of the superclass.
i) The mtc and system type of a class shall be mtc and system compatible with the mtc and system types of the
superclass, respectively.
51.1.1 Scope rules

Class constitutes a scope unit. For the uniqueness of identifiers, the rules specified in clause 5.2.2 of ETSI
ES 201 873-1 [1] apply with the following exceptions:

a)

b)

c)

I dentifiers from the higher, Scope can be retised for imember declarations. A, reference to areused identifier
without a prefix occurring inside a class scope shall be resolved as a reference to the class member. In order to
refer to the declaration on the higher-scope; the identifierishall, bepreceded with a module name and adot (".").

Identifiers of member declarations can be reused inside methods for formal parameter and local declarations.
A reference to areused identifier without aprefix occurring inside a class method shall be resolved as a
reference to the farmal -parameter-or:local \declaration. In.orderitoreferto-the member declaration, the
identifier shall be preceded with thet his3keyword and-adot.

Reusing identifiers of members of the component type specified in the runs on clause of the class for members
and inside methods for formal parameters and local declarationsis not allowed.

EXAMPLE:

modul e C assMWbdul e {
const integer a := 1;

type class Myd ass() {

5.1.1.2

const integer a := 2;

function doSonething (integer a := 3) {
log(a); // logs 3 (for the default val ue)
log(this.a); // logs 2
| og(d assModule.a); // logs 1

function doSonet hi ngEl se () {
log(a); // logs 2
log(this.a); // also logs 2
| og(C assMbdul e.a); // logs 1

Abstract classes

A class can be declared as @abstract. In that case, it is allowed that it also declares abstract member functions who shall
be defined by al non-abstract subclasses. An abstract method function has no function body but can be called in all

concrete

instances of subclasses of the abstract class declaring it. Other members of the abstract class or its subclasses

may use the abstract functions asif it was concrete where at runtime the concrete overriding definition will be used.

ETSI

10 ETSI ES 203 790 V1.2.1 (2020-05)

NOTE 1: Abstract classes are only useful as superclasses of concrete classes.
Restrictions
a) Abstract classes cannot be explicitly instantiated.

b) If aclassthat isnot declared abstract extends an abstract class, al methods that have no implementation in the
superclass shall be implemented in this class.

NOTE 2: Variables of an abstract class type can only contain references to instances of non-abstract subclasses.

51.1.3 External classes

A class may also be declared as external. In that case, it may declare external member functions without a function
body. It is allowed to omit the external keyword from these function declarations. External classes can extend
non-external classes but classes not declared as external shall not extend from external classes. External classes may
also define other members like normal classes. When instantiating an external class, the external object being created is
provided by the platform adapter and the external method calls to the external object are delegated viathe platform
adapter to the corresponding method of the external object.

NOTE 1: External classes are away to use object-oriented library functionality in TTCN-3 while still remaining
abstract and independent of actual implementation. Libraries for common constructs like stacks,
collections, tables can be defined or automatic import mechanisms could be provided.

If an object of an external classisinstantiated, it implicitly creates an external object and the internal object hasa
handle to the external one. The reference to the external object is called a handle. When an external method is invoked
on the internal object, the call is delegated to the handle.

NOTE 2: External objects are'passibly shared between different parts of-the test-system. Therefore, racing
conditions and deadlocks have to be avoided by the external implementation.

Restrictions
a Void
b) Void
¢) Void

d) Aninternal class shall not extend an external class

EXAMPLE:

type class @bstract Collection {
function @bstract size() return integer;
/1 internal default inplenentation
function isEnpty() return bool ean {
return size() == 0
}

}

type external class Stack extends Coll ection {
function push(integer v);
function pop() return integer;
function isEnpty() return boolean; // external inplenentation overrides internal
function size() return integer; // external inplenentation of abstract function}

5114 Final Classes

If aclass shall not be subclassed, it may be declared as @ i nal . Final classes cannot be abstract.

ETSI

11 ETSI ES 203 790 V1.2.1 (2020-05)

5115 Constructors

Syntactic Structure

create "(" { Formal Paraneter , }* ")"

[external "(" { Formal Paranmeter , }* ")"]
[":" dassType "(" { Actual Paraneter , }+ ")"]
[StatenentBl ock]

Semantic Description
A class may define a constructor called cr eat e.

If no constructor is defined inside a class body, an implicit default constructor is provided where the formal parameters
of the constructor are the parameters of the (implicit or explicit) constructor of the direct superclass and one additional
formal in parameter for each declared var field of the classitself and also all const or t enpl at e fieldswith no
initializer in their order of declaration with the same type as in the declaration.

The constructor isinvoked on atype reference to the class and the result of thisinvocation is a new instance object of
the constructor's specific class. If aclassis extending another class with a constructor with at least one parameter
without default, that constructor shall be invoked by adding a super-constructor clause to the constructor declaration.
The super-constructor clause consist of a reference to the class being extended and an actual parameter list. An implicit
constructor will automatically pass the required actual parameters to the constructor of its superclass.

In the constructor, it is allowed to refer to the object being constructed ast hi s to reference the fields of the object to
be created in case that the names of the formal parameters clash with the names of those fields. They are explicitly
allowed to have the same names as class members.

When an object is created viatheinvocation of a constructor; the fieldsof each class-body in the class hierarchy that
have initializers are initialized before the execution of that class body’ s'constructor body: The fields of a superclass that
have initializers are initialized before the fields of the subclass, Also, the constructor of the superclass is executed
before the constructor body of the subclass! Thus, it'isensured'that all initialization of the superclass hierarchy as well
aslocal fields with initializers is finished before the execution of a constructor body.

Since the members of a class body, can appearin.any order; and forward references are allowed between them, afield
with an initializer which is referenced by the initializer. of another field, isinitialized first.

Asthe underlying external constructor of external classes might need additional parameters, these can be provided via
the additional external formal parameter list. If no internal constructor needs to be defined, the constructor may be
defined without external formal parameter list and no body. In that case, the formal parameter list defines the formal
parameters passed to the external constructor.

Restrictions
a) All formal parameters of the constructor shall bei n parameters.

b) The constructor body shall not assign anything to variables that are not local to the constructor body or
accessible fields of the class the constructor belongs to.

c) The constructor body shall not use blocking operations.
d) Theinitialization of amember field shall not invoke any member function in the object being initialized.
€) The constructor body shall not invoke any member function in the object being initialized.

f) A member constant or template shall be initialized exactly once, either by itsinitialization part or by at most
one constructor body.

g) Direct orindirect cyclicinitialization is not allowed. That isthe initializer of afield shall not use the same field
directly or indirectly.

h) Theinitializer of afield shall not use afield that does not have an initializer.

ETSI

12 ETSI ES 203 790 V1.2.1 (2020-05)

EXAMPLE 1:

type class MWd ass {
var integer a;
const float b;
const float c := 7,
tenplate float nyTenplate := ?;
/1 inmplicit constructor:
/1 only using variable fields and non-variable fields with no initializer
/lcreate(integer a, float b) { // no paraneter for c and nyTenpl ate
/1 this.a := a;
/1 this.b :=b
11}
}

type class MO ass2 extends MO ass {
tenplate integer t;
/1 explicit constructor
create(tenplate integer t) : MOass(2, 0.5) {
this.t :=1t;
}

}

type class Myd ass3 extends Myd ass {
var float f;
/1 inmplicit constructor:
/] create(integer a, float b, float f) : M dass(a, b) {
/1 this.f :=f;
/1 }

EXAMPLE 2:

For each initialization statement itd's marked with|its initializati on order in the comment.

type class MySuperd ass {
var integer a :=5; // 1
const float b;
create(integer a, float b) {

this.a:=a; // 3
this.b := b; /4
}
}
type class MySubC ass extends MySuperd ass {
var tenplate integer t :=7?; [/ 2
create(tenplate integer t) : MySuperC ass(2, 0.5) {
this.t :=1t; /] 5
}
}
5.1.1.6 Constructor invocation
Syntactic Structure
Cl assReference "." create [Actual ParList] [external Actual ParList]

Semantic Description

To instantiate on object, the constructor of the classisinvoked. The result of that operation is areference to a newly
constructed of the given concrete class.

If the constructor is a constructor of an external class that has an external formal parameter list, an additional external
actual parameter list is given following the external keyword. If the constructor is to be invoked with a parameter list
with no actual parameters, then the whole actual parameter list may be omitted.

If the constructor of an external classisinvoked, first the external object is created using the given external formal
parameters, then the internal constructor is evaluated to initialize the internal part of the object.

ETSI

13 ETSI ES 203 790 V1.2.1 (2020-05)

EXAMPLE:

type class Naned {
var charstring nane;

}

type external class Address extends Nanmed {
create(charstring nane)
external (charstring host, int portNr)
Naned(nane) {}
}

type external class UnnamedAddress {
create (charstring host, int portNr);
}

var Address v_addr :
var UnnanedAddress :

Addr ess. create(“Connection 1) external (“127.0.0.1", 555);
UnnanedAddr ess. creat e(“127.0.0. 1", 555);

var Stack v_stack := Stack.create; // only inplicit external constructor w thout paraneters
5117 Destructors
Syntactic Structure

finally StatenentBl ock
Semantic Description

A destructor may be provided using afinally declaration following the class body. This destructor will be invoked
automatically at the latest before the system deall ocates an object instance (which istool specific and out of the scope of
the present document) or when the owning,component is terminates. The SatementBlock has access to al members
accessible to the class. The StatementBlock is semantically,afunction body of afunctionwithout return clause.

When deallocating the object instance, the destructor of the associated ¢lasslisinvoked first, followed by the destructor
of all parent classes in the reverse order of superclass hierarchy.

51.1.8 Methods

A method is a function defined inside the class body. It has the same properties and restrictions as any normal function,
but it isinvoked in an object which can be referred to by thet hi s object reference. A method invocation can access
the class's own fields and also the inherited protected fields and methods of its superclasses.

A method inherited from a superclass can be overridden by the subclass by redefining a function of the same name and
with the same formal parameter list. When a method is called in an object, the version of the most specific class of the
super class hierarchy of the concrete class that defines the method in its body will be invoked. The overridden method
can be invoked from the overriding class by using the keyword super asthe object reference of the invocation. If a
method shall not be overridden by any subclass, it can be declared as @ i nal .

Public methods, if not overridden by the subclass, are inherited from the superclasses. If a public method is declared in
aclass, it can be invoked also in all objects of itsdirect or indirect subclasses.

If a public method is overridden, the overriding method shall have the same formal parametersin the same order asthe
overridden method. Public methods shall be overridden only by public methods. Protected methods may be overridden
by public or protected methods.

The return type of an overriding function shall be the same as the return type of the overridden function with the same
template restrictions and modifiers.

Methods shall havenor uns on, syst emor nt ¢ clause directly attached to them. However, they inherit these
clauses from their surrounding class.

ETSI

	pýﬁª�9§%+ïU˙¢û½˙ilõEçõÄÉ©łd�{µA�¿c×@p�¹²yKm�ˆ”�˚Ì‘Höûﬂ‚MQ<�ã,�¸æÊ�˚¨b�ADłCXł¡ìú02¶�¶L⁄í÷®‘rkcØQvü	j§�y‘êGÉ†ÿ˘	W]ßÆ×z

