Final draft ETS| ES 203 790 V1.2.1 (2020-02)

ETSI STANDARD

Methods for Testing %Q%Specm?lon (MTS);
The Testing and TestQQQMrol Notation version 3;
TTCN-3 Language Ext@%@’n@@by‘éct -Oriented Features

'/�K��!����ҭ���(��A6t�{�����h�c�U6�!�;:�VQo���x�n��[/���k��If\(����cx��Θ���r_�f�#�v�k����nZ	Y��%6�L���W{����nThQ�

2 Final draft ETSI ES 203 790 V1.2.1 (2020-02)

Reference
RES/MTS-203790-O0Fv1.2.1

Keywords
language, TTCN-3

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax:+33 4936547 16

Siret N° 348 623 56200017 - NAF 742 C
Association a but nonJucratifienregistrée a'la
Sous-Préfecture de'Grasse’(06) N° 7803/88

Important notice

The present document.cam:be downloaded from:
http://www.etsi-org/standards-search

The present document may be made available in.electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall nat;be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one madepublicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ |ogo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

ETSI

���3潗�D��T�H�T�芅2�O��������E��so��5��U{��:�����#���˰,�E�x�ԽM�$X]�}���#�>;�*~�ȷH������z*ʠ����m�J2C���[G>C�(}0

3 Final draft ETSI ES 203 790 V1.2.1 (2020-02)

Contents

INtellectual Property RIGNES.... ..ottt b e n e n e e 5
01 Yo (o PSS 5
Modal VErDS TEMINOIOQY.......ccveeiieiieeeeie ettt e e e s te e e e s besbe e tesbeeseebesneensessesaeenseseeeseesessens 5
1 o0 0L SR 6
2 L= £ 101 S 6
21 NOIMELIVE FEFEIBINCES ... ecneeeeeeeste ettt ettt st e et e e st e s teste s et eteeneeneeseeeeseesbeebeeneeseeneensenseseesbesaeesesneeneensens 6
22 INfOrMEEIVE FEFEIENCES. ...ttt ettt et ettt a et e st e e seeebe s st eae et enseneeseesbesaeeresneeneeneens 6
3 Definition of terms, symbols and abbreviations............c.covieeiiieeieie e e e 7
31 LIS 0PTSRS 7
3.2 Y 101 7
33 ADDIEVIBLIONS ...ttt etk bt bttt e b b eh e eb e e ae e s e e e e aR e bt sR e eb e e Rt e Rt e e e R et sheebeeneeneennen 7
4 Package conformance and COMPALTDIHTTYcoureriririre e 7
5 Package Concepts for the COre LanQUAGE.ccveiieiierieiie ettt e e ste s sbe s te e s re s enae e ens 8
5.0 LT 0T SRR 8
51 L= LSS S-S = 0 o @ o] <ot £ 8
510 GENETEL ... ot bt e et e r bt e et bt b a bt e et eenr b naeere e e s 8
511 ClBSSES ...ttt s Pen e ere e e e gh B e« (e e e e et b ae bt e et e e en b naeene e e s 8
51.1.0 €T o1 | T o TS 8
51.1.1 o0 0= 1 L PSR 9
5112 ADSITCE ClASSES. ...t st B4 T s ket et ra e bbbt e st et et e e e s e besbesbeeneeneennens 9
51.1.3 L =0 = oS oA S S USRS 10
5114 g O =SS = S O S S PSRRUSN 10
5115 (000101 1 1 U010 = T S e S e SRR 10
51.1.6 (00101 i (0010 101770707 1 o o TU SRS 12
5117 DESIIUCTONS ... e e B A ettt ettt ettt e b e be e et e s ne e s be e e nne e e sneeennnee e 13
51.1.8 Y (oo o PSR 13
51.1.9 MENOA INVOCELION ... i sttt ettt bbbttt e e et b b sneebe e e e e e 13
5.1.1.10 RV T oL oSSR 14
51111 BUITE-TN ClBSSES ...t e ettt b ettt bbb e s b e bt s h e bt e bt e s e e e et e s bt sbeeb e e e enneneen 14
51112 INESLE CIASSES ... e ettt s ettt st e st et st e se e st e bese st e bt sa e st e beseeseebesae s e et e see e ebe e ebesbe e ebesaeneesesbeneenens 14
512 (@ 0= ot £ T e O SPRPSPSSN 15
5.1.2.0 LT 0T PSR 15
5121 L@ 10T £ o T o OO PETRURPRR 15
5122 ODJECE REFEIEINCES ...ttt b et b bbbt b e e b s bbb et nn e ens 15
51.2.3 N T L ;= 0 S SRRSUSN 15
5124 SEIECE ClaSS-SEAEEMENT. ..ottt sttt ae e st e e e e e ee st e s beeeseeseesaeeneeneeneenenns 16
5125 Of -operator (Dynamic Class DiSCrimiNaiioN)cerereeerereeerseneeresseeee s ssesseesees 16
5126 L@ S 1] o TR 16
5.2 (o= 0] 1 =T [o 17
520 (CT= 0T - OSSP PSPPSN 17
521 Extension to ETSI ES 201 873-1, clause 16.1.0 (FUNCLIONS)ccveiieeieeie e ceeseestees e 17
5.2.2 Extension to ETSI ES 201 873-1, clause 16.1.3 (External FUNCLIONS)cccoecveeeeneenieseeieee e 17
523 Extension to ETSI ES 201 873-1, clause 16.1.4 (Invoking functions from specific places).........ccccce........ 18
524 Extension to ETS| ES 201 873-1, clause 16.2 (AILSLEDS).....ccorveererereresieriee e 18
525 Extension to ETS| ES 201 873-1, clause 16.3 (TESL CASES)eveuerrerieerierieeeie sttt 18
526 Extension to ETS| ES 201 873-1, clause 18 (Overview of program statements and operations)............... 19
527 Extension to ETS| ES 201 873-1, clause 19 (Basic program Statements)ccceoevereeeneneeienenieiesiesienenns 20
6 TRI EXtenSioNS fOr the PaCKAQEcoiiiiee ettt et e s ne s ne s 24
6.1 Extensionsto clause 5.3 of ETSI ES 201 873-5 Data interface.........cccvvreeeerene i 24
6.2 Extensions to clause 5.6.3 of ETSI ES 201 873-5 Miscellaneous Operationsccveereereereesiesseesseesnennns 25
6.3 Extensionsto clause 6 of ETSI ES 201 873-5 Java™ language Mapping........cccccueeeeveveeerereeeeeereeeeeeessseeenenns 26
6.4 Extensionsto clause 7 of ETSI ES 201 873-5 ANSI C language Mapping........ccceeuveevereereeseeseesesseesseeseesnns 28
6.5 Extensionsto clause 8 of ETSI ES 201 873-5 C++ language MapPiNg..........ccceerreeeereeneeersenseesseseeesseseeeenes 28

ETSI

b���r���*�p������^&��M�R(��H�����ϣ�	�M��ע��x�e%�g�c������3~'�!�ec�}��!��ə(DP����k4����o��B:�\�P���#�H�|�/��Z

4 Final draft ETSI ES 203 790 V1.2.1 (2020-02)

6.6 Extensionsto clause 9 of ETSI ES 201 873-5 C# language MapPiNgcoeeeereereeerieneeeriesseeseeseeesseseeeens 29
7 TCl EXtensionS for the PaCKAQEcooiiiee et st 30
7.1 Extensionsto clause 7.2.2.1 of ETSI ES 201 873-6 Abstract TTCN-3 datatypes and values..............c.......... 30
7.2 Extensionsto clause 7.2.2 of ETSI ES 201 873-6 Abstract TTCN-3 datatypes and values..........cccceeeueruennee. 30
7.3 Extensionsto clause 7.2.2.2.0 of ETSI ES 201 873-6 BASIC FUIESccouiiiiiiriiiieereeie e e 31
74 Extensionsto clause 7.2.2.2 of ETSI ES 201 873-6 Abstract TTCN-3 VAlUES..........cccooererieeiieninene e 32
75 Extensionsto clause 7.3.4.1 of ETSI ES 201 873-6 Abstract TCI-TL provided........ccccccevvevvecvecinvcevee e 33
76 Extensionsto clause 8 of ETSlI ES 201 873-6 Java™ language Mapping..........ccueeeeveveeeuereeeeeereeeseeessseeenenes 35
7.7 Extensionsto clause 9 of ETSI ES 201 873-6 ANSI C language Mapping.........coeeeeruereeerseneeersesseeseseenennes 37
7.8 Extensionsto clause 10 of ETS| ES 201 873-6 C++ |anguage Mapping........ccceerveereeruereeserseneeesseseesessesseesns 39
79 Extensionsto clause 11 of ETS|I ES 201 873-6 W3C XML MaPPING......ccervireeueriirieeriirieesieseeeseeseeeeseseeneenes 41
7.10 Extensionsto clause 12 of ETS| ES 201 873-6 C# language MapPingcoceereeeeerieneeesesseesseseeessesseseenes 42
8 XTRI Extensions for the Package (OPLtIONal)..........coueiiirireneieeeeeeeesesc e 44
8.1 Changesto clause 5.6.3 of ETSI ES 201 873-5 Miscellaneous Operations...........ccovvveveeveeneeceeeeeseesieesee e 44
8.2 Extensionsto clause 6 of ETSI ES 201 873-5 Java™ language Mapping........c.cceueevevereeeereeeeeeeeesseeessseseenenes 46
8.3 Extensionsto clause 7 of ETSI ES 201 873-5 ANSI C language Mapping........ccceeuveveeeeseeseeneeseeseesseeseesnns 46
84 Extensionsto clause 8 of ETSI ES 201 873-5 C++ language MapPing........cccveveereeeeeeeeseeseeseeseesseeseeseesnes 47
85 Extensionsto clause 9 of ETSI ES 201 873-5 C# language MapPiNgcoeeeereereeerieneeeriesseeseeseeesseseeeens 47
Annex A (normative): BNF and StatiC SEMaNTICS......cccoveireririesic s 48
Al EXtensionSto TTCN-3 terMINAIS......cccoiieieiieese et see ettt e te s e e sseeaeseeeneessensesreeneenneens 48
A.2 Modified TTCN-3 syntax BNF produCioNS............cfileeeeeireieerie e ee e eeese s esee e see e sreeaessesseesnesneens 49
A.3 Additional TTCN-3 syntax BNF pProduCHiONS...cut e eerreireeeee s aiie afiiieseeesseseeseessesssessesseessessessesssesseens 50
Annex B (normative): Standard CollECLIONS. .. et e e 52
B.1 TheTTCN3 standard_collections MOGUIE.. ..o ... it 52
B.1.0 LC T g1 - | e A PSP 52
B.1.1 THE COlIECHTON ClASS ...y e B ey Tt BT st et eeebesb e bt se et e e s b e ebesbesaeeb e et e e e b e sb e besneeae e e ennees 53
B.1.2 I L= I E 0 = ST S R 53
B.1.3 BT TG o (R e = e 53
B.1.4 THE QUEUE CIESS ..ot ey A ettt ettt e et et e st e bt e s e e e et et e seesbesaeeaeeneensesseseeseesneeneeneensenes 54
B.1.5 The PriorityQUEUE ClESS ..ot 8 ittt ettt b e et b e ettt b b ne b e b e seebeebennene s 54
B.1.6 I LS = oo =t 55
B.1.7 The RINGBUFTEN ClaSS......eiiieiiei i h b e e iisties et e s e ee ettt et e et eeae e st e s teesteeteeneesaeesaeesseenseenteenseeneenseeneens 55
B.1.8 TSN oS 1Y =T o T USSR 56
B.1.9 TRE SEE CLASS. ... B bbbt bbbttt e e b bt saeea e e e 57
0 0 O T I 0 T=] (ot o o [= TS S 57
o I R I 0= (= = (] o = TP PSSO P PP PRUSRSRP 57
L 11 (TP TP PR PRPRPRTROTN 58

ETSI

~��)��+	��_�����*���hHY����9($i���ߤƚ��J�v�Ǒ���?��ܦ/ep�㱋�k�lk��qp� U�;K�abB��š�z����2F�9�#�n0�[g�:HVѨ*�ډ�2��

5 Final draft ETSI ES 203 790 V1.2.1 (2020-02)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which areindicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

Thisfinal draft ETSI Standard (ES) has been produced by ET SlTechnical Committee Methods for Testing and
Specification (MTS), and is now submitted for the ET.Shstandards Membership Approval Procedure.

Theuse of underline (additional text) and strikethrough (deleted text) highlights the differ ences between base
document and extended documents.

The present document relates to the multizpart standard:ET SH ES201 873 covering the Testing and Test Control
Notation version 3, asidentified in ETSIPES 201 873-1 [1].

Modal verbs terminology

In the present document "shall”, "shall not',*"should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" areto be interpreted as described in clause 3.2 of the ETS| Drafting Rules (Verbal formsfor the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

K�k��q5F�В�=��L�H�9)Rw�䨪���^��m>�{���km��QX~��
�s=i��`�W����E*�%J�N��P	0ءIH�}�D�<t���5}�UzX��X.H���d^x#�#��|#�

6 Final draft ETSI ES 203 790 V1.2.1 (2020-02)

1 Scope

The present document defines the support for object-oriented featuresin TTCN-3. TTCN-3 can be used for the
specification of al types of reactive system tests over avariety of communication ports. Typical areas of application are
protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module
testing, testing of OMG CORBA based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can
be used for many other kinds of testing including interoperability, robustness, regression, system and integration testing.
The specification of test suites for physical layer protocolsis outside the scope of the present document.

TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as conceptsin the
TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or
usages of TTCN-3.

While the design of TTCN-3 package has taken into account the consistency of acombined usage of the core language
with anumber of packages, the concrete usages of and guidelines for this package in combination with other packages
is outside the scope of the present document.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version'applies. For non=gpecific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly-available irrthe expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinksincluded-in this clause werevalid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary far the application of the present document.

[1] ETSI ES 201 873-1: "Methodsfor Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part-1..FTCN-3 Core Language".

2] ETSI ES 201 873:4:™Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics'.

[3] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[4] ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

ETSI

��\����K��=�1�!�P.�3�B�����{ğ�E���d˯�������nH�{�b����}�'�e��A��PH3��'탑���Ip��Fd�t
��{Bd��<'��I&�$G8�
=��j����

7 Final draft ETSI ES 203 790 V1.2.1 (2020-02)
[i.2] ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[i.3] ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML schemawith TTCN-3".

[i.4] ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the terms givenin ETSI ES 201 873-1 [1], ETSI ES 201 873-4 [2],
ETSI ES 201 873-5[3] and ETSI ES 201 873-6 [4] apply.

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in ETSI'ES 201 873-1[1], ETSI ES 201 873-4 [2],
ETSI ES 201 873-5[3] and ETSI ES 201 873-6 [4] apply.

4 Package conformance and compatibility

The package presented in the present document is identified by the package tag:
"TTCN- 3: 2018 (nbj ect-Oiented feat ures! - to beused with modules complying with the present document.

For an implementation claiming to conform to this package version, all features specified in the present document shall
be implemented consistently with the requirements given in the present document and in ETS| ES 201 873-1 [1] and
ETSI ES 201 873-4[2].

The package presented in the present document is compatible to:

. ETSI ES201 873-1[1], version 4.10.1;

ETSI ES 201 873-4 [2], version 4.6.1;
e ETSI ES201873-5[3], version 4.8.1;
° ETSI ES201 873-6 [4], version 4.9.1;
e ETSI ES201873-7[i.1];

e ETSI ES201873-8[i.2);

e ETSI ES201873-9[i.3];

e ETSIES201873-10[i.4].

If later versions of those parts are available and should be used instead, the compatibility to the package presented in the
present document has to be checked individually.

ETSI

�
6�T%	L�!�R��@�!�M����iLvI��|�l��I&?�!���q'���H�Z�b���$�*��;/5ɲ��~d�u�����=�*+��<�RG�Q�����L8Ȑ�iE�/��n<�e��ߘv

8 Final draft ETSI ES 203 790 V1.2.1 (2020-02)

5 Package Concepts for the Core Language

5.0 General

This package defines objec-oriented features for TTCN-3, i.e. it extends the TTCN-3 core language (ETSI
ES 201 873-1 [1]) with well-known concepts from object-oriented programming and modelling languages. This
package realizes the following concepts:

. classes (i.e. class definition, scope rules, abstract and external classes, refinement, constructors, destructors,
methods, visibility, and built-in classes);

. objects (i.e. ownership, object references, select class-statement, dynamic class discrimitation and casting);
and

. exception handling (i.e. ability to define exception handling for functions, external functions, altsteps and test
cases).

5.1 Classes and Objects

51.0 General

This clause introduces the concepts of class types and their valties, called objects aswell as the operations allowed to be
applied to these objects.

51.1 Classes

5.1.1.0 General

Syntactical Structure

[public | private]

type [external] class [@inal | @bstract]
Identifier [extends O assType]
[runsOnSpec] [systenSpec] [ntcSpec]

“{" {d assMenber} "}"

[finally StatenentBl ock]

Semantic Description

A classisatype where the values are called objects. A class can declare fields (variables, constants, templates, timers,
classes) and methods as its members. Each member name inside the class shall be unique, there is no overloading. The
private and protected fields and methods are only accessible by the methods of the class, while the public members of
the class can be accessed al so from behaviour not defined in the class. The private members of the class can be accessed
directly only by members of the classitself. All members which are neither private nor public are protected and can also
be accessed by members of subclasses.

All fields may be declared without initializer, even const and template fields.

A class can extend another class. The extended class is called the superclass, while the extending classis called the
subclass. The resulting type of a class definition is the set of object instances of the classitself and al instances of its
direct or indirect subclasses. A subclassis a subtype of its direct and indirect superclasses and its object instances are
type compatible with them. If a class does not explicitly extend another classtype, it implicitly extends the root class
type obj ect . Thus, all classes are directly or indirectly extensions of the obj ect class.

A class can have optional runs on, mtc and system clauses. This restricts the type of component context that can create
objects of that class and all methods of this class. If a class does not have one of these clauses, it inheritsit from its
superclass, if the superclass has one. If the superclass has or inherits a runs on, mtc or system clause, the subclass may
declare each of these clauses with a more specific component type than the one inherited. The function members of
classes shall not have runs on, system or mtc classes but inherit them from their surrounding class or its superclasses.

ETSI

��RV�2o�ڶ=<�J�,ֳ�?�H�ݶv�����9*������E�9�OD4ܧ�Xb�͏זMt�����{^
ѩ�ڲlGf
��G�$�<��,;���ǳ�0���K���'q�$�R�)�n��

9 Final draft ETSI ES 203 790 V1.2.1 (2020-02)

Restrictions
a) Templatesare not alowed for classtypes.

b) Passing of object referencesto the create operation of a component type or a function started on another
component is not allowed.

¢) No subtyping definition is allowed for class types viathe normal subtype definition.

d) Nolocal/global constants or module parameters of class type or containing class type fields or elements are
allowed.

e) Classtype cannot be the contained value of an anytype value.

f) Thefunctions of aclass shall not have aruns on, mtc or system clause.

g) Therunson type of aclass shall be runs on compatible with the runs on type of the behaviour creating a class.
h) Therunson type of aclass shall be runs on compatible with the runs on type of the superclass.

i) The mtc and system type of aclass shall be mtc and system compatible with the mtc and system types of the
superclass, respectively.

51.1.1 Scope rules

Class constitutes a scope unit. For the uniqueness of identifiers, the rules specified:in clause 5.2.2 of ETSI
ES 201 873-1 [1] apply with the following exceptions:

a) ldentifiersfrom the higher scope can be reused.for member declarations. A reference to areused identifier
without a prefix occurring inside a class scope-shall®be resolved-as-areference to the class member. In order to
refer to the declaration on the higher scope, the.identifier-shall be’preceded with a module name and adot (".").

b) Identifiers of member declarations can'be réuised inside ' methods for formal parameter and local declarations.
A reference to areused identifier without'a prefix occurring inside a class method shall be resolved asa
reference to the formal parameter or local declaration.“In order to refer to the member declaration, the
identifier shall be preceded with thet hi s keyword and a dot.

¢) Reusingidentifiers of members of the compenent type specified in the runs on clause of the class for members
and inside methods for formal parameters.and local declarationsis not allowed.

EXAMPLE:

modul e C assMWbdul e {
const integer a := 1;

type class Myd ass() {
const integer a := 2;
function doSonething (integer a := 3) {
log(a); // logs 3 (for the default val ue)
log(this.a); // logs 2
| og(d assModule.a); // logs 1

function doSonet hi ngEl se () {
log(a); // logs 2

log(this.a); // also logs 2
| og(C assMbdul e.a); // logs 1

}
51.1.2 Abstract classes

A class can be declared as @abstract. In that case, it is allowed that it also declares abstract member functions who shall
be defined by all non-abstract subclasses. An abstract method function has no function body but can be called in all
concrete instances of subclasses of the abstract class declaring it. Other members of the abstract class or its subclasses
may use the abstract functions asiif it was concrete where at runtime the concrete overriding definition will be used.

NOTE 1: Abstract classes are only useful as superclasses of concrete classes.

ETSI

�t����~�2>hQڠ~\䊆%K�g����(l��z��=��F���悍�����O-�^�j&y�i��g��t�����Ol��3��P(d�������Ŀ����]��.���j�
�{�P�rX�Y��w�

10 Final draft ETSI ES 203 790 V1.2.1 (2020-02)

Restrictions
a) Abstract classes cannot be explicitly instantiated.

b) If aclassthat isnot declared abstract extends an abstract class, all methods that have no implementation in the
superclass shall be implemented in this class.

NOTE 2: Variables of an abstract class type can only contain references to instances of hon-abstract subclasses.

51.1.3 External classes

A class may also be declared as external. In that case, it may declare external member functions without a function
body. It is alowed to omit the external keyword from these function declarations. External classes can extend
non-external classes but classes not declared as external shall not extend from external classes. External classes may

a so define other members like normal classes. When instantiating an external class, the external object being created is
provided by the platform adapter and the external method calls to the external object are delegated viathe platform
adapter to the corresponding method of the external object.

NOTE 1. External classes are away to use object-oriented library functionality in TTCN-3 while still remaining
abstract and independent of actual implementation. Libraries for common constructs like stacks,
collections, tables can be defined or automatic import mechanisms could be provided.

If an object of an external classisinstantiated, it implicitly creates an external object and the internal object hasa
handle to the external one. The reference to the external object is called a handle. When an external method is invoked
on the internal object, the call is delegated to the handle.

NOTE 2: External objects are possibly shared between different parts of the test system. Therefore, racing
conditions and deadlocks have to be avoided by the external.implementation.

Restrictions
a Void
b) Void
¢) Void

d) Aninterna class shall not extend an external\class

EXAMPLE:

type class @bstract Collection {
function @bstract size() return integer;
/1 internal default inplenentation
function i seEnpty() return bool ean {
return size() == 0
}
}

type external class Stack extends Collection {
function push(integer v);
function pop() return integer;

function i senpty() return boolean; // external inplenentation overrides internal
function size() return integer; // external inplenmentation of abstract function}

5114 Final Classes

If aclass shal not be subclassed, it may be declared as @ i nal . Fina classes cannot be abstract.

51.15 Constructors

Syntactic Structure

create "(" { Formal Paraneter , }* ")"

[external "(" { Formal Paranmeter , }* ")"]
[":" CassType "(" { Actual Paraneter , }+ ")"]
[StatenentBl ock]

ETSI

��t���
p�Aǌ]�L?t���0��#�%n�����	�<�Ȏ���r���Y�����VC6ʲ�0<���o<�O���v���Nd�%�c��������C[�zG��)���H��	������ٕ�

11 Final draft ETSI ES 203 790 V1.2.1 (2020-02)

Semantic Description
A class may define a constructor called cr eat e.

If no constructor is defined inside a class body, an implicit default constructor is provided where the formal parameters
of the constructor are the parameters of the (implicit or explicit) constructor of the direct superclass and one additional
formal in parameter for each declared var field of the classitself and also all const ort enpl at e fieldswith no
initializer in their order of declaration with the same type as in the declaration.

The constructor isinvoked on atype reference to the class and the result of thisinvocation is a new instance object of
the constructor's specific class. If aclassis extending another class with a constructor with at |east one parameter
without default, that constructor shall be invoked by adding a super-constructor clause to the constructor declaration.
The super-constructor clause consist of areference to the class being extended and an actual parameter list. An implicit
constructor will automatically pass the required actual parameters to the constructor of its superclass.

In the constructor, it is alowed to refer to the object being constructed ast hi s to reference the fields of the object to
be created in case that the names of the formal parameters clash with the names of those fields. They are explicitly
allowed to have the same names as class members.

When an object is created via the invocation of a constructor, the fields of each class body in the class hierarchy that
haveinitiaizers are initialized before the execution of that class body’ s constructor body. The fields of a superclass that
have initidizers areinitialized before the fields of the subclass. Also, the constructor of the superclassis executed
before the constructor body of the subclass. Thus, it is ensured that all initialization of the superclass hierarchy as well
aslocal fieldswith initializersis finished before the execution of a constructor body.

Since the members of a class body can appear in any order and forward references are allowed between them, afield
with an initializer which is referenced by the initializer of another field, isinitialized first.

Asthe underlying external constructor of external classes might need additional parameters, these can be provided via
the additional external formal parameter list. If no internal constructor.heedsto be defined, the constructor may be
defined without external formal parameter list and'no body. In that.case) the formal parameter list defines the formal
parameters passed to the external constructor,

Restrictions
a) All formal parameters of the constructor shall.bein parameters.

b) The constructor body shall not assign anything to variables that are not local to the constructor body or
accessible fields of the class the constructor belongs to.

€) The constructor body shall not use blocking operations.
d) Theinitialization of amember field shall not invoke any member function in the object being initialized.
€) The constructor body shall not invoke any member function in the object being initialized.

f) A member constant or template shall be initialized exactly once, either by itsinitialization part or by at most
one constructor body.

g) Direct or indirect cyclic initialization is not allowed. That isthe initializer of afield shall not use the same field
directly or indirectly.

h) Theinitializer of afield shall not use afield that does not have an initializer.
EXAMPLE 1:

type class MWd ass {
var integer a;
const float b;
const float ¢ :=7;
tenplate float nyTenplate := ?;
[/ inplicit constructor:
/1 only using variable fields and non-variable fields with no initializer
/lcreate(integer a, float b) { // no parameter for c and nyTenpl ate

/1l this.a := a;
/1l this.b :=b
11}

ETSI

�4\$���������YP������@.�f*҆���Ȣa���N=����g�^��ȏ�w.$sl\D�';v�ۛ5�BsF#a)[
�F�Clֻ�y��/� �8U����v�T��g�͡�!��\��=9

12 Final draft ETSI ES 203 790 V1.2.1 (2020-02)

type class MO ass2 extends Myd ass {
tenpl ate integer t;
/1 explicit constructor
create(tenplate integer t) : MyCass(2, 0.5) {
this.t :=1t;
}

}

type class Myd ass3 extends Myd ass {
var float f;
[/ inplicit constructor:
/] create(integer a, float b, float f) : Mydass(a, b) {
I/ this.f :=f;
1}

EXAMPLE 2:

For each initialization statement it is marked with itsinitialization order in the comment.

type class MySuperd ass {
var integer a :=5; // 1
const float b;
create(integer a, float b) {
this.a:=a; // 3

this.b :=b; // 4
}
}
type class MySubd ass extends MySuperd ass {
var tenplate integer t :=7?; /] 2
create(tenplate integer t) : MSuperC ass(2, -0¢5) {
this.t :=t; // 5
}
}
51.1.6 Constructor invocation

Syntactic Structure

Cl assReference "." create [Actual ParList] [¢external Actual ParlList]
Semantic Description

To instantiate on object, the constructor of theclassisinvoked. The result of that operation is areference to a newly
constructed of the given concrete class.

If the constructor is a constructor of an external class that has an external formal parameter list, an additional external
actual parameter list is given following the external keyword. If the constructor isto be invoked with a parameter list
with no actual parameters, then the whole actual parameter list may be omitted.

If the constructor of an external classisinvoked, first the external object is created using the given external formal
parameters, then the internal constructor is evaluated to initialize the internal part of the object.

EXAMPLE:

type class Naned {
var charstring nang;

}

type external class Address extends Naned {
create(charstring nane)
external (charstring host, int portNr)
Named(nane) { }

}

type external class UnnanedAddress {
create (charstring host, int portNr);
}

var Address v_addr := Address.create(“Connection 1") external (“127.0.0.1", 555);
var UnnanedAddress := UnnanedAddress. create(“127.0.0.1", 555);
var Stack v_stack := Stack.create; // only inplicit external constructor w thout paraneters

ETSI

D ��y��.�&���e������{э��i�0�y�����:̋e�Y���@�^�_�0�n}���P~���wP��>�4�	�	�2;W��J�8@``w���	ۃ�{�Kf�t��I�U���K��͘�}

13 Final draft ETSI ES 203 790 V1.2.1 (2020-02)

51.1.7 Destructors

Syntactic Structure

finally StatenentBl ock
Semantic Description

A destructor may be provided using afinally declaration following the class body. This destructor will be invoked
automatically at the latest before the system deallocates an object instance (which istool specific and out of the scope of
the present document) or when the owning component is terminates. The StatementBlock has access to all members
accessible to the class. The StatementBlock is semantically afunction body of afunction without return clause.

When deallocating the object instance, the destructor of the associated classis invoked first, followed by the destructor
of al parent classesin the reverse order of superclass hierarchy.

5.1.1.8 Methods

A method is afunction defined inside the class body. It has the same properties and restrictions as any normal function,
but it isinvoked in an object which can be referred to by thet hi s object reference. A method invocation can access
the class's own fields and also the inherited protected fields and methods of its superclasses.

A method inherited from a superclass can be overridden by the subelass by redefining a function of the same name and
with the same formal parameter list. When a method is called in@robject, the version of the most specific class of the
super class hierarchy of the concrete class that defines the methed in its body will'be‘invoked. The overridden method
can be invoked from the overriding class by using the keyword super astheobject reference of the invocation. If a
method shall not be overridden by any subclass, it can he declared as @ i.nal

Public methods, if not overridden by the subclass,«are inherited fromthesuperclasses. If apublic method is declared in
aclass, it can beinvoked also in all objects of its direct-or indirect:subclasses.

If a public method is overridden, the overriding method shall\have the same formal parametersin the same order as the
overridden method. Public methods shall ‘be overridden only by public methods. Protected methods may be overridden
by public or protected methods.

The return type of an overriding function shall bethe:same as the return type of the overridden function with the same
template restrictions and modifiers.

Methods shall have nor uns on, syst emofnt ¢ clause directly attached to them. However, they inherit these
clauses from their surrounding class.
5.1.1.9 Method invocation

Syntactical Structure

[(Opjectlnstance | "super") "."] ldentifier "(" FunctionActual ParList ")"
A method invocation is afunction call associated with a certain object defined in the class of that object.

Methods are invoked using the dotted notation on an object reference. Inside the scope of a class, methods of the same
class or any visible inherited methods can be invoked without the ObjectInstance prefix if the object the method shall be
invoked in is the same object as the one invoking it. The usual restrictions on actual parameters, as well as runs on, mtc
and system types apply also on method invocations. All other restrictions that apply to called functions also apply to
method invocation.

The super keyword shall only be used from inside a class member definition to access one of the accessible methods
inherited from the super class of the member's containing class.

ETSI

|��t���lS�˺%'��NH�"��а��ؿ��˝�7���.���Bc}���́28|��A�w�?
B�[�"�pm����&���(���\�I/�/.���X�p��WE�5k�w&���F~-�P��3�

