International Standard

1151/1

Flight dynamics - Concepts, quantities and symbols Part 1: Aircraft motion relative to the air

Mécanique du vol - Concepts, grandeurs et symboles - Partie 1: Mouvement de l'avion par rapport à l'air

Third edition - 1985-10-01
Corrected and reprinted - 1985-12-01

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75% approval by the member bodies voting.

International Standard ISO 1151/1 was prepared by Technical Committee ISO/TC 20, Aircraft and space vehicles.

ISO 1151/1 was first published in 1975. This third edition cancels and replaces the second edition, of which it constitutes a technical revision.

Users should note that all International Standards undergo revision from time to time and that any reference made herein to any other International Standard implies its latest edition, unless otherwise stated.

[^0]Printed in Switzerland

ISO 1151, Flight dynamics - Concepts, quantities and symbols, comprises, at present, seven parts:

Part 1 : Aircraft motion relative to the air.
Part 2 : Motions of the aircraft and the atmosphere relative to the Earth.
Part 3 : Derivatives of forces, moments and their coefficients.
Part 4 : Parameters used in the study of aircraft stability and control.
Part 5 : Quantities used in measurements.
Part 6 : Aircraft geometry.
Part 7 : Flight points and flight envelopes.
ISO 1151 is intended to introduce the main concepts, to include the more important terms used in theoretical and experimental studies and, as far as possible, to give corresponding symbols.

In all the parts comprising ISO 1151, the term "aircraft" denotes a vehicle intended for atmosphere or space flight. Usually, it has an essentially port and starboard symmetry with respect to a plane. That plane is determined by the geometric characteristics of the aircraft. In that plane, two orthogonal directions are defined: fore-and-aft and dorsal-ventral. The transverse direction, on the perpendicular to that plane, follows.

When there is more than one plane of symmetry, or when there is none, it is necessary to introduce a reference plane. In the former case, the reference plane is one of the planes of symmetry. In the latter case, the reference plane is arbitrary. In all cases, it is necessary to specify the choice made.

Angles of rotation, angular velocities and moments about any axis are positive clockwise when viewed in the positive direction of that axis.

All the axis systems used are three-dimensional, orthogonal and right-handed, which implies that a positive rotation through $\pi / 2$ around the x-axis brings the y-axis into the position previously occupied by the z-axis.

Numbering of sections and clauses

With the aim of easing the indication of references from a section or a clause, a decimal numbering system has been adopted such that the first figure is the number of the part of ISO 1151 considered.

Contents

1.0 Introduction
Page 11.1 Axis syste
1.1 Axis systems 1
1.2 Angles 2
1.3 Velocities and angular velocities 3
1.4 Aircraft inertia, reference quantities and reduced parameters 5
1.5 Forces, moments, coefficients and load factors 7
1.6 Thrust, resultant moment of propulsive forces, airframe aerodynamic force, airframe aerodynamic moment, and their components 11
1.7 Coefficients of the components of the thrust, of the resultant moment of propulsive forces, of the airframe aerodynamic force and of the airframe aerodynamic moment 13
1.8 Forces and moments involved in the control of the aircraft 16
1.9 Forces and moments acting on the motivators 19
Figures 20 to 22

Annex

Symbols of the components of the airframe aerodynamic force and the nondimensional coefficients of these components in use, or coming into use, in different countries23

Flight dynamics - Concepts, quantities and symbols Part 1: Aircraft motion relative to the air

1.0 Introduction

This part of ISO 1151 gives basic definitions and deals with aircraft motion relative to the atmosphere, assumed to be at rest or in translational motion at constant velocity relative to the Earth. ${ }^{11}$

The aircraft is assumed to be rigid. However, most of the definitions can be applied to the case of a flexible aircraft.

When account is taken of the variations at the Earth's surface in the direction of the vertical (local direction of acceleration due to gravity), the term given in the sub-clauses and figures in question is qualified by the term "local".

1.1 Axis systems

No.	Term	Definition	Symbol
1.1.1	Earth-fixed axis system	A system with both the origin and axes fixed relative to the Earth, and chosen as appropriate.	$x_{0} y_{0} z_{0}$
1.1.2	Normal earth-fixed axis system	An earth-fixed axis system (1.1.1) in which the z_{0}-axis is oriented according to the downward vertical passing through the origin.	$x_{\mathrm{o}} y_{\mathrm{o}} z_{\mathrm{o}}$ NOTE - However, $x_{g} y_{g} z_{g}$ is an acceptable alternative.
1.1.3	Aircraft-carried earth axis system	A system in which each axis has the same direction as the corresponding earth-fixed axis, with the origin fixed in the aircraft, usually the centre of gravity.	$x_{0} y_{0} z_{0}$
1.1.4	Aircraft-carried normal earth axis system	A system in which each axis has the same direction as the corresponding normal earth-fixed axis, with the origin fixed in the aircraft, usually the centre of gravity.	$x_{0} y_{0} z_{0}$ NOTE - However, $x_{g} y_{g} z_{g}$ is an acceptable alternative.
1.1.5	Body axis system ${ }^{2)}$ Longitudinal axis Transverse axis Normal axis	A system fixed in the aircraft, with the origin, usually the centre of gravity, consisting of the following axes: An axis in the reference plane (see foreword on p. iii) or, if the origin is outside that plane, in the plane through the origin, parallel to the reference plane. An axis normal to the reference plane and positive to starboard. An axis completing the system. NOTE - This axis lies in the reference plane or is parallel to that plane. It is positive in the ventral sense.	$x y z$ x y z

[^1]| No. | Term | Definition | Symbol |
| :---: | :---: | :---: | :---: |
| 1.1.6 | Air-path axis system ${ }^{11}$
 x_{a}-axis;
 air-path axis
 y_{a}-axis;
 lateral air-path axis;
 cross-stream axis
 z_{a}-axis;
 normal air-path axis | A system with the origin fixed in the aircraft, usually the centre of gravity, consisting of the following axes:
 An axis in the direction of the aircraft velocity (1.3.1).
 An axis normal to the air-path axis and the z_{a}-axis defined below; it is positive to starboard.
 An axis
 - in the reference plane or, if the origin is outside that plane, parallel to the reference plane, and
 - normal to the air-path axis.
 The positive direction of this axis is chosen so as to complete the orthogonal, right-handed system $x_{\mathrm{a}} y_{\mathrm{a}} z_{\mathrm{a}}$. | $x_{\mathrm{a}} y_{\mathrm{a}} z_{\mathrm{a}}$ x_{a} y_{a} z_{a} |
| 1.1.7 | Intermediate axis system ${ }^{1)}$ $x_{\mathrm{e}} \text {-axis }$ $y_{\mathrm{e}} \text {-axis }$ $z_{\mathrm{e}} \text {-axis }$ | A system with the origin fixed in the aircraft, usually the centre of gravity, consisting of the following axes:
 The projection of the air-path axis on the reference plane, or, if the origin is outside that plane, on the plane through the origin, parallel to the reference plane.
 An axis normal to the reference plane and positive to starboard.
 NOTE - This axis coincides with the transverse axis (1.1.5) or is parallel to it.
 An axis completing the axis system.
 NOTE - This axis coincides with the normal air-path axis (1.1.6) or is parallel to it. | $x_{\mathrm{e}} y_{\mathrm{e}} z_{\mathrm{e}}$
 x_{e}
 y_{e}
 z_{e} |

1) Usually, the origins of the axis systems defined in 1.1.5, 1.1.6 and 1.1.7 coincide. If that is not the case, it is necessary to distinguish the different origins by appropriate suffixes.

1.2 Angles

1.2.1 Orientation of the aircraft velocity with respect to the body axis system (see figure 1)

No.	Term	Definition	Symbol
1.2.1.1	Angle of sideslip	The angle which the aircraft velocity (1.3.1) makes with the reference plane of the aircraft. It is positive when the aircraft velocity compo- nent along the transverse axis (1.1.5) is positive. According to convention, it has the range:	β
1.2.1.2	Angle of attack	The angle between the longitudinal axis (1.1.5) and the projection of the aircraft velocity (1.3.1) on the reference plane. It is positive when the aircraft velocity component along the normal axis (1.1.5) is positive. According to convention, it has the range: $-\pi<\alpha \leqslant \pi$	α

1.2.2 Transition from the aircraft-carried normal earth axis system to the body axis system

This transition is achieved by three rotations, defined below, performed in the following order: Ψ, Θ, Φ (see figure 2).
NOTE - Similar angles may be defined with respect to any aircraft-carried earth axis system. The same symbols, Ψ, Θ, Φ, with appropriate suffixes as necessary, may then be used. However, the terms "azimuth angle", "inclination angle" and "back angle" refer only to the specific case where the z_{0}-axis is vertical.

No.	Term	Definition	Symbol
1.2.2.1	Azimuth angle	The rotation (positive, if clockwise) about the $z_{0}\left(z_{\mathrm{g}}\right)$-axis which brings the $x_{0}\left(x_{\mathrm{g}}\right)$-axis into coincidence with the projection of the longitudinal axis (1.1.5) on the horizontal plane through the origin.	Ψ
1.2.2.2	Inclination angle	The rotation in a vertical plane, following the Ψ rotation (1.2.2.1), which brings the displaced $x_{0}\left(x_{\mathrm{g}}\right)$-axis into coincidence with the longitudinal axis (1.1.5). It is positive when the positive portion of the x-axis lies above the horizontal plane through the origin.	Θ
According to convention, it has the range:			
$-\frac{\pi}{2} \leqslant \Theta \leqslant \frac{\pi}{2}$	The rotation (positive, if clockwise) about the longitudinal axis (1.1.5), brings the displaced $y_{0}\left(y_{\mathrm{g}}\right)$)-axis into its final position y from the pos- ition it reached after the Ψ rotation (1.2.2.1).	Φ	
1.2.2.3	Bank angle		

1.2.3 Transition from the aircraft-carried normal earth axis system to the air-path axis system

This transition is achieved by three rotations, defined below, performed in the following order: $\chi_{a^{\prime}}, \gamma_{a^{\prime}} \mu_{a^{\prime}}$ (see figure 3).

No.	Term	Definition	Symbol
1.2.3.1	Air-path azimuth angle; air-path track angle	The rotation (positive, if clockwise) about the $z_{0}\left(z_{\mathrm{g}}\right)$-axis which brings the $x_{\mathrm{o}}\left(x_{\mathrm{a}}\right)$-axis into coincidence with the projection of the air-path $x_{\mathrm{a}}-$ axis 11.1 .6$)$ on the horizontal plane through the origin.	χ_{a}
1.2.3.2	Air-path inclination angle; air-path climb angle	The rotation in a vertical plane, following the χ_{a} rotation (1.2.3.1). which brings the displaced $x_{\mathrm{o}}\left(x_{\mathrm{g}} \mathrm{g}\right.$-axis into coincidence with the air-path x_{a}-axis (1.1.6). It is positive when the positive portion of the x_{a}-axis lies above the horizontal plane through the origin. According to convention, it has the range:	γ_{a}
1.2.3.3	Air-path bank angle	The rotation (positive, if clockwise) about the air-path x_{a}-axis $(1.1 .6)$ which brings the displaced $y_{\mathrm{o}}\left(y_{\mathrm{g}}\right)$-axis into its final position y_{a} from the position it reached after the χ_{a} rotation (1.2.3.1).	μ_{a}

1.3 Velocities and angular velocities

No.	Term	Definition	Symbol
1.3.1	Aircraft velocity	The velocity of the origin of the body axis system (1.1.5) (usually the centre of gravity), relative to the air, unaffected by the aerodynamic field of the aircraft.	\vec{V}
The magnitude of the aircraft velocity.	The velocity of propagation of a sound wave in the ambient air, unaffected by the aerodynamic field of the aircraft.	a	
1.3.2	Speed of sound		

No.	Term	Definition	Symbol
1.3.3	Mach number	The ratio of the airspeed (1.3.1) to the speed of sound (1.3.2). Equal to V/a.	M is recommended. the symbols $M a$ and . $/ 1$ may be used if there is likely to be any confusion.
1.3.4	Aircraft velocity components	The components of the aircraft velocity (1.3.1), \vec{V}, for any of the axis systems used. In the axis systems 1.1.1 to 1.1.4: component along the x_{0}-axis component along the y_{0}-axis component along the z_{0}-axis In the body axis system (1.1.5): component along the longitudinal axis component along the transverse axis component along the normal axis NOTE - In the air-path axis system (1.1.6), the component along the x_{a}-axis is $u_{\mathrm{a}}=V$.	$\begin{aligned} & u_{0} \\ & v_{0} \\ & w_{0} \end{aligned}$ u v w The velocity components may be written V_{i}, where i is a number or letter subscript.
1.3.5	Aircraft angular velocity Aircraft angular speed	The angular velocity of the body axis system (1.1.5) relative to the Earth. The magnitude of aircraft angular velocity.	$\vec{\Omega}$ Ω
1.3.6	Angular velocity components Rate of roll Rate of pitch Rate of yaw	The components of the aircraft angular velocity (1.3.5), $\vec{\Omega}$, for any of the axis systems used. In the axis systems 1.1.1 to 1.1.4: component along the x_{0}-axis component along the y_{0}-axis component along the z_{0}-axis In the body axis system (1.1.5): component along the longitudinal axis component along the transverse axis component along the normal axis	$\begin{gathered} p_{0} \\ q_{0} \\ r_{0} \\ \\ p \\ q \\ r \end{gathered}$ The angular velocity components may be written Ω_{i}, where i is a number or letter subscript.

No.	Term	Definition	Symbol
1.3.7	Normalized angular velocities	The normalized form of the components of the aircraft angular velocity (1.3.5), defined as follows: In the body axis system (1.1.5):	
	Normalized rate of roll	$\frac{p l}{V}$	p^{*}
	Normalized rate of pitch	$\frac{q l}{V}$	q^{*}
	Normalized rate of yaw	$\frac{r l}{V}$	r^{*}
		where l is the reference length (1.4.6); V is the airspeed (1.3.1). Similar normalized quantities can be formed for the other axis systems.	Similar quantities using a constant reference speed in place of V (1.3.1) may also be defined. These require different symbols.

1.4 Aircraft inertia, reference quantities and reduced parameters

No.	Term	Definition	Symbol
1.4.1	Aircraft mass	The current mass of the aircraft.	m
1.4.2	Moments of inertia	The moments of inertia of the aircraft with respect to the body axes $x y z$ (1.1.5). Moment of inertia about the longitudinal axis: $\int\left(y^{2}+z^{2}\right) \mathrm{d} m$ Moment of inertia about the transverse axis: $\int\left(z^{2}+x^{2}\right) d m$ Moment of inertia about the normal axis: $\int\left(x^{2}+y^{2}\right) \mathrm{d} m$	I_{x} I_{y} I_{z} NOTE - A, B, C are acceptable alternatives.
1.4.3	Products of inertia	The products of inertia of the aircraft with respect to the body axes $x y z$ (1.1.5). These are: $\int y z \mathrm{~d} m$ $\int z x \mathrm{~d} m$ $\int x y \mathrm{~d} m$	$\begin{aligned} & \qquad \begin{array}{l} I_{\mathrm{yz}} \\ I_{\mathrm{zx}} \\ I_{\mathrm{xy}} \end{array} \\ & \text { NOTE }-D, E, F \\ & \text { are acceptable } \\ & \text { alternatives. } \end{aligned}$

No.	Term	Definition	Symbol
1.4.4	Radius of gyration	The square root of the ratio of the moment of inertia to the aircraft mass (1.4.1): for the longitudinal axis (1.1.5): $\sqrt{I_{\mathrm{x}} / m}$ for the transverse axis (1.1.5): $\sqrt{I_{\mathrm{\gamma}} / m}$ for the normal axis (1.1.5): $\sqrt{I_{\mathrm{z}} / m}$	r_{x} r_{y} r_{z}
1.4.5	Reference area	An area used to define the aerodynamic coefficients and various normalized quantities. In a given document, one single reference area will be used the value of which shall be specified. NOTE - Although hinge moment coefficients are usually defined using specific reference areas, it may be more appropriate, in some cases, to use the single reference area adopted for the aircraft.	S
1.4 .6	Reference length	A length used to define the aerodynamic moment coefficients and various normalized quantities. It is recommended, in a given document, that one single reference length be used the value of which shall be specified. NOTES 1 It is, however, acceptable to introduce two different reference lengths as regards the longitudinal motion and the lateral motion. These lengths shall also be specified. 2 Although hinge moment coefficients are usually defined using specific reference lengths, it may be more appropriate, in some cases, to use the single reference length adopted for the aircraft.	l
1.4.7	Normalized mass	A non-dimensional coefficient defined as follows: $\frac{m}{1 / 2 \varrho_{\mathrm{e}} S /}$ where m is the aircraft mass (1.4.1); ϱ_{e} is a datum (air) density (3.3.2); S is the reference area (1.4.5); I is the reference length (1.4.6).	μ or m^{*}
1.4 .8	Dynamic unit of time	A quantity defined as follows: $\frac{m}{1 / 2 \varrho_{\mathrm{e}} V_{\mathrm{e}} S}=\frac{\mu l}{V_{\mathrm{e}}}$ where m is the aircraft mass (1.4.1); ϱ_{e} is a datum (air) density (3.3.2); V_{e} is a datum speed (3.3.1); S is the reference area (1.4.5); I is the reference length (1.4.6); μ is the normalized mass (1.4.7).	τ

No.	Term	Definition	Symbol
$\mathbf{1 . 4 . 9}$	Aerodynamic unit of time	A quantity defined as follows: 	$\frac{l}{V_{\mathrm{e}}}$
where	τ_{A}		
		l is the reference length (1.4.6);	

1.5 Forces, moments, coefficients and load factors

No.	Term	Definition	Symbol
1.5.1	Resultant force 1.5.2	Components of the resultant force	The resultant vector of the system of forces acting on the aircraft, including the airframe aerodynamic forces and propulsion forces, but excluding the gravitational, inertial and reaction forces due to contact with the Earth's surface.

[^0]: (c) International Organization for Standardization, 1985

[^1]: 1) The motions of the atmosphere for which this assumption does not hold true will be examined in another part of ISO 1151.
 2) Usually, the origins of the axis systems defined in 1.1.5, 1.1.6 and 1.1.7 coincide. If that is not the case, it is necessary to distinguish the different origins by appropriate suffixes.
