INTERNATIONAL STANDARD

ISO 21216

First edition 2011-01-15

Intelligent transport systems — Wireless communications — CALM using millimetre communications — Air interface

Systèmes intelligents de transport — Communications sans fil — CALM utilisant des communications millimétriques — Interface d'air

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 21216:2011 https://standards.iteh.ai/catalog/standards/sist/b6bed6c5-4400-4fc3-bb65-1d9ef2aa918d/iso-21216-2011

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 21216:2011
https://standards.iteh.ai/catalog/standards/sist/b6bed6c5-4400-4fc3-bb65-1d9ef2aa918d/iso-21216-2011

COPYRIGHT PROTECTED DOCUMENT

© ISO 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents			
	Foreword		
Introdu	uction		
1	Scope	1	
2	Conformance	1	
3	Normative references	1	
4	Terms and definitions	2	
5	Symbols and abbreviated terms	2	
6 6.1 6.2 6.3	Requirements Architecture	3 3	
6.4 6.5 6.6	Physical (PHY) layer parameters	5 5 5	
	A (informative) ITU Region T.A.N.D.A.R.D. PREVIEW		
Annex B (informative) ITU Region 2tandards.itch.ai)			
Annex	C (informative) ITU Region 3	10	
Bibliog	graphy	12	

1d9ef2aa918d/iso-21216-2011

iii

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 21216 was prepared by Technical Committee ISO/TC 204, Intelligent transport systems.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 21216:2011 https://standards.iteh.ai/catalog/standards/sist/b6bed6c5-4400-4fc3-bb65-1d9ef2aa918d/iso-21216-2011

Introduction

This International Standard is part of a family of standards for communications access for land mobiles (CALM) which determines a common architecture, network protocols and air interface definitions for wireless communications using a range of communication bearers, such as Cellular 2nd Generation, Cellular 3rd Generation, microwaves, millimetre waves and Infra-red light. Other air interfaces may be added at a later date. These air interfaces are designed to provide parameters and protocols for broadcast, point-point, vehicle-to-vehicle, and vehicle-point communications for intelligent transport systems (ITS) applications.

This International Standard provides specifications for the PHY part of a communications interface for systems operating within the millimeter frequency range of 57 to 66 GHz. This communications interface (referred to as CALM MM) is designed to provide up to medium range, medium-to-high-speed wireless communications links in the ITS sector. Such communication links are required for quasi-continuous, brief or prolonged communications between

- vehicles and the roadside communication infrastructure, and
- vehicles.

Vehicles may be moving or stationary.

Wherever practicable, this International Standard has been developed by reference to suitable existant standards, adopted by selection. Required regional variations are provided for.

ITS applications can be enhanced or are enabled by the CALM architecture and media include car-to-car and point-to-multipoint safety messaging, collision avoidance, the update of roadside telemetry and messaging, probe data collection, general internet access, image and video transfer, infotainment, traffic management, monitoring and enforcement in mobile situations, route guidance, maintenance management, and "yellow pages" services.

The millimetric frequency band is suitable for applications which require the transfer of a large quantity of data, or of combinations of applications which together require a high data transfer because they need to be able to coexist.

This International Standard recognizes that frequency allocations in the millimetric range around 60 GHz differ in different parts of the world. In Europe (ITU Region 1), the band 63 to 64 GHz has been designated for ITS applications, while in some countries in ITU Regions 2 and 3 ITS applications may take place within the wider range of 57 to 66 GHz, in which a variety of generic application types is allowed. The emission limits vary among regions or countries. A frequency band specifically designated for ITS applications is not required in order to implement this International Standard.

Because of these variations, this International Standard describes the physical layer parameters which need to be standardized to characterize the air interface. This description will enable equipment to be designed which has functional interoperability in the same country or region, but which will have detailed parameters limited in accordance with the appropriate national standards. It also describes those parameters characterizing the operation of the radio which are needed for interfacing to the CALM architecture, in accordance with ISO 21218.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 21216:2011

https://standards.iteh.ai/catalog/standards/sist/b6bed6c5-4400-4fc3-bb65-1d9ef2aa918d/iso-21216-2011

Intelligent transport systems — Wireless communications — CALM using millimetre communications — Air interface

1 Scope

This International Standard covers the open systems interconnection (OSI) Layer 1 physical layer (PHY) air interface for a communications medium operating in the 60 GHz millimetric frequency range by providing the parameters for medium range, medium to high speed wireless communications in the ITS sector. It specifies the parameters required to interface the Layer 1 of such a system to the communications access for land mobiles (CALM) architecture.

Application-specific requirements are not included in this International Standard. These requirements are defined in the CALM management and upper layer standards, including the CALM application management ISO 24102.

2 Conformance

iTeh STANDARD PREVIEW

Conformance to the requirements of this International Standard shall be verified in accordance with the relevant national or regional regulatory requirements.

ISO 21216:2011

3 Normative references ds.iteh.ai/catalog/standards/sist/b6bed6c5-4400-4fc3-bb65-1d9ef2aa918d/iso-21216-2011

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 21217, Intelligent transport systems — Communications access for land mobiles (CALM) — Architecture

ISO 21218:2008, Intelligent transport systems — Communications access for land mobiles (CALM) — Medium service access points

ISO 24102, Intelligent transport systems — Communications access for land mobiles (CALM) — Management

ECC/DEC/(09)01, ECC Decision of 13 March 2009 on the harmonised use of the 63-64 GHz frequency band for Intelligent Transport Systems (ITS)

ERC/REC Recommendation 70-03

Korean Government Regulation MIC RRL Notice 2007-22

ITU-R M.1452-1, Millimetre Wave Radiocommunications Systems for ITS Applications, 2009-10

Radio Law Administrative Regulations, Article 6 (59-66 GHz), Ministry of Internal Affairs and Communications, Japan, 2000

US FCC, 47 C.F.R., Part 15, 255: 57.05-64 GHz

4 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 21217 and ISO 21218 apply.

5 Symbols and abbreviated terms

For the purposes of this document, the following symbols and abbreviated terms apply. Reference should also be made to ISO 21217.

4QAM 4 level Quadrature Amplitude Modulation

BPSK Binary Phase Shift Keyed

CALM Communications Access for Land Mobiles

CEPT European Committee for Posts and Telecommunications

CFR Code of Federal Regulations
CI Communications Interface

dB Decibel

dBi power gain in decibels relative to an isotropic antenna

dBm power in decibels relative to 1 mW

DLL Data Link Layer

ECC European Communications Committee

e.i.r.p. equivalent isotropic radiated power DARD PREVIEW

FCC Federal Communications Commission (US)

GHz Giga Hertz (10⁹ Hertz) (**standards.iteh.ai**)

IEEE Institution of Electrical and Electronics Engineers
IE Intermediate Ereguency ISO 21216:2011

IF Intermediate Frequency https://standards.iteh.ai/catalog/standards/sist/b6bed6c5-4400-4fc3-bb65-

IN Interface-Network SAP 1d9ef2aa918d/iso-21216-2011

ITS Intelligent Transport Systems

ITU International Telecommunications Union

IVC Inter-Vehicle Communications

km/h kilometre per hour MHz Mega Hertz (10^6 Hertz) MI Management-Interface SAP μ W micro watt (10^{-6} watt) mW milli watt (10^{-3} watt)

MM Millimetre (as applied to a millimetric band communication system)

OBU On Board Unit

OFDM Orthogonal Frequency Division Multiplexed

OSI Open Systems Interconnection

PDNR Preliminary Draft New Recommendation

PHY Physical layer ppm parts per million

QPSK Quadrature Phase Shift Keyed

RF Radio Frequency
RSU Road Side Unit

RVC Roadside-to-Vehicle Communications

SAP Service Access Point
SI Security-Interface SAP

6 Requirements

6.1 Architecture

CALM MM shall comply with the overall CALM architecture as specified in ISO 21217. Details of CALM MM, including interfaces to other elements of the CALM architecture, are illustrated in Figure 1. Details of the interfaces MI and IN shall be as specified in ISO 21218.

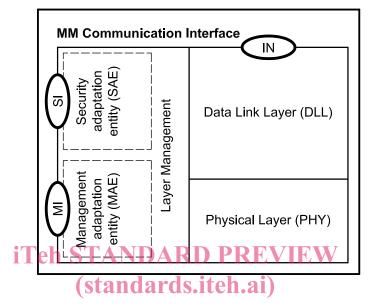


Figure 1 — MM architecture schematic

https://standards.iteh.ai/catalog/standards/sist/b6bed6c5-4400-4fc3-bb65-1d9ef2aa918d/iso-21216-2011

In Figure 1, the PHY is specified by this International Standard and the data link layer and the layer management by anticipated future standards.

6.2 Adoption of other standards and internationally adopted practices

Within ITU Region 1, this International Standard shall operate in the environment of, and to the parameters defined in, the following ITU Recommendation and national or regional standards:

- a) ECC/DEC/(09)01;
- b) ERC/REC Recommendation 70-03, Annex 5: 63-64 GHz;
- c) ITU-R M.1452-1.

Within ITU Region 2, this International Standard shall operate in the environment of, and to the parameters defined in, the following ITU Recommendation and national standards:

- a) US FCC, 47 C.F.R., Part 15, 255; and
- b) ITU-R M.1452-1.

Within ITU Region 3, this International Standard shall operate in the environment of, and to the parameters defined in, the following ITU Recommendation and national standards:

- a) Japanese Regulations: Radio Law Administrative Regulations, Article 6 (59-66 GHz), Ministry of Internal Affairs and Communications, Japan, 2000;
- b) Korean Regulation, MIC RRL Notice 2007-22: 57-64 GHz;
- c) ITU-R M.1452-1.

6.3 Physical (PHY) layer parameters

The physical layer parameters are defined by reference to national or regional regulatory requirements for ITS. Annexes A, B and C give the current or proposed regulations in Europe, USA, Japan and Korea.

Implementations of this International Standard shall as a minimum

- a) minimize harmful interference with other standardized regional radio units in this spectrum in accordance with regional/national regulatory parameters,
- b) support individual vehicle speeds to a maximum of 220 km/h in mobile communication systems (but this requirement does not apply to static communications systems), and
- c) be compliant with one set of regional/national regulatory parameters, and may support other regional/national parameters as applicable ANDARD PREVIEW

Implementations of this International Standard shall, in addition, specify the parameters outlined in 6.3.1 to 6.3.4.

6.3.1 Spectrum

ISO 21216:2011

https://standards.iteh.ai/catalog/standards/sist/b6bed6c5-4400-4fc3-bb65-

For global use, the millimetric radio part shall be capable of operating within the range of 57 GHz to 66 GHz.

For regional or national use, the millimetric radio part may cover a limited spectrum.

Bandwidth usage shall comply with national or regional regulations.

The radio part shall operate on those frequencies specified by the authorizing national regulatory body.

6.3.2 Transmitter power

The transmitter power of the millimetric radio part shall not exceed the maximum power level given in the relevant regional or national standard.

Power control, where specified, shall be implemented in accordance with the relevant regional or national standard. This functionality shall not be available to the user of the equipment. Over-riding the power control function shall not be available to the user of the equipment.

The operational power level may be negotiated between two OBUs or between OBUs and RSUs, starting from a locally defined initial power level, with the objective of best spectrum utilization.

6.3.3 Directivity

The angular characteristics of the antennas used for transmitting or receiving shall comply with regional or national standards.

6.3.4 Modulation

Different modulation schemes to be used in the millimetric radio part may result in different data rates. The modulation schemes shall be implemented as defined in regional or national regulatory requirements.

Where an adaptive modulation scheme is specified, a basic modulation scheme shall be used for a negotiation header. The modulation scheme negotiated in the header shall be used for the remainder of the frame.

6.4 Regional and/or national limitations on radio parameters

Mobile equipment (OBU) shall comply with those regulations applicable to the intended operating area or areas. Any mobile equipment intended for multi-area or open, global use shall be re-configurable when moving between the relevant regulatory jurisdictions. This re-configuration shall be performed automatically and securely. End users shall not have any access to this procedure.

OBUs may also be configured for local/regional use only. Such units need only follow the relevant national/regional requirements.

The automatic re-configuration, based on an update on regulatory information, shall be performed in accordance with ISO 21218.

6.5 Provision of PHY Communications Interface (CI) parameters

The provision of MM-PHY-Cl parameters shall be in accordance with ISO 21218:2008, Annex A, Table A.1, as shown in Table 1.

(standards.iteh.ai)

Table 1 — MM-PHY-CI parameters required to interface with the CALM architecture

MM-PHY-CI https://standards.iteh.ai/c Parameter No	180 21210201 atalog/station 45, Table A. C44(betaal) x(180-21/16-21	0-4fc3-Parameter Name
1	3	Rxsensitivity
2	4	Txpower
3	5	DataRate
4	6	DataRateNW
5	7	DataRatesNW
6	9	Directivity
7	16	CommRangeRef
8	20	CommProfil
9	22	Medium
10	25	RegulatoryInformation
11	49	TXpowMax

6.6 Over the air transaction protocols

The over the air transaction protocols are outside the scope of this International Standard and may be defined in other national or regional standards.