INTERNATIONAL STANDARD ISO 16616 First edition 2015-08-01 # Test methods for natural fibrereinforced plastic composite (NFC) deck boards Méthodes d'essai pour les planches en composite bois-plastique (WPC) # iTeh STANDARD PREVIEW (standards.iteh.ai) # iTeh STANDARD PREVIEW (standards.iteh.ai) ISO 16616:2015 https://standards.iteh.ai/catalog/standards/sist/0e55a805-6bc3-4fa8-a7ed-685d1000d149/iso-16616-2015 # COPYRIGHT PROTECTED DOCUMENT #### © ISO 2015, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Contents | | | | | |----------|---------|---|---------|--| | Fore | eword | | v | | | Intr | oductio | n | vi | | | 1 | Scone | e | 1 | | | _ | - | native references | | | | 2 | | | | | | 3 | Term | s and definitions | 2 | | | 4 | Test | specimens | 2 | | | 5 | Cond | litioning | 2 | | | 6 | Test | method | 2 | | | U | 6.1 | Density | | | | | | 6.1.1 Test method | | | | | | 6.1.2 Test specimens | 2 | | | | | 6.1.3 Immersion liquid | | | | | | 6.1.4 Procedure | | | | | 6.2 | Maximum bending load | | | | | | 6.2.1 Test specimens | | | | | 6.0 | 6.2.2 Test method | | | | | 6.3 | Bending creep strain | | | | | | 6.3.1 Test specimens. 6.3.2 Test method ANDARD PREVIEW | 4 | | | | 6.4 | 6.3.2 Test method A. D.A.R.D. P.R.F.V. H. W. | 4
1 | | | | 0.4 | Impact resistance
6.4.1 Test speci mens ndards.iteh.ai) | 4
Д. | | | | | 6.4.2 Test method | 4 | | | | 6.5 | Impact strength | | | | | 0.0 | 6.5.1 https:Test.specimens.atalog/standards/sist/0e55a805-6bc3-4fa8-a7ed- | 5 | | | | | 6.5.2 Test method _{685d1000d149/iso-16616-2015} | 5 | | | | 6.6 | Distortion | | | | | | 6.6.1 Test specimens | 6 | | | | | 6.6.2 Test method | 6 | | | | 6.7 | Screw holding strength | 6 | | | | | 6.7.1 Test specimens | | | | | | 6.7.2 Test method | | | | | 6.8 | Skid resistance | | | | | | 6.8.1 Test specimens | | | | | (0 | 6.8.2 Test method | | | | | 6.9 | Water absorption 6.9.1 Test specimens | | | | | | 6.9.1 Test specimens | | | | | 6.10 | Freeze and thaw test | | | | | 0.10 | 6.10.1 Test specimens | | | | | | 6.10.2 Test method | | | | | 6.11 | Lengthwise linear thermal expansion coefficient | | | | | 6.12 | Weatherproofing | | | | | | 6.12.1 Test specimens | | | | | | 6.12.2 Test method | | | | | 6.13 | Harmful substance test | | | | | 6.14 | Formaldehyde emission | | | | | | 6.14.1 Test specimens | | | | | | 6.14.2 Test method | | | | | 6.15 | Burning behaviour | | | | | 6.16 | Resistance against discolouration caused by microorganisms | | | | | | 6.16.1 Resistance against discolouring micro-fungi | | | | | | 6.16.2 Resistance against discolouring algae | 13 | | # ISO 16616:2015(E) | 7 | Test reports | .14 | |--------|--------------|-----| | Biblio | ography | .15 | # iTeh STANDARD PREVIEW (standards.iteh.ai) ## Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 61, *Plastics*, Subcommittee SC 11, *Products*. # Introduction Natural fibre-reinforced composite (NFC) or wood-plastics composite (WPC) is made from one or more natural fibres or flours and a polymer or mixture of polymers. Natural fibres and flours come from different vegetable sources. Any kinds of polymers, virgin or recycled, can be used but currently the most common ones are poly(vinyl chloride), polypropylene, and polyethylene. For editorial reasons, in this International Standard, the term and abbreviation "natural fibre-reinforced composite" (NFC) is used instead of "wood-plastics composite" (WPC). NFC materials can be considered neither as filled plastics nor as a special kind of wood material. They are to be considered as different materials having their own characteristics. At present, the main application of NFC products is deck boards. NFC deck boards can be processed by different techniques, as extruding for profiles and pipes, compression moulding or injection moulding. Recently, industrial interests have focused on NFC as a composite material partially derived from biomass. However, as NFC's main constituents are hydrophilic natural fibres and hydrophobic polymer(s), problems such as cracking, bending, and strength reduction may occur in case of long-term use due to their different characteristics in the use environment related to e.g. moisture, UV resistance and thermal changes. However, due to the lack of standardized testing methods to evaluate the performance and durability of NFC, it is difficult to give the orientation for the product development and to protect the consumers' interest. Consequently International Standards are being established in order to encourage technology development in the NFC production field and to protect consumers from NFC products of low quality. (standards.iteh.ai) # Test methods for natural fibre-reinforced plastic composite (NFC) deck boards # 1 Scope This International Standard provides test methods of natural fibre-reinforced composite (NFC) deck boards used in exterior applications. This International Standard will cover the preparation of specimen, test equipments, procedures of measurements and evaluation methods. #### 2 Normative references The following referenced documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 178, Plastics — Determination of flexural properties ISO 179-1, Plastics — Determination of Charpy impact properties — Part 1: Non-instrumented impact test ISO 291, Plastics — Standard atmospheres for conditioning and testing ISO 868, Plastics and ebonite — Determination of indentation hardness by means of a durometer (Shore hardness) ISO 899-2, Plastics — Determination of creep behaviour — Part 2: Flexural creep by three-point loading ISO 1183-1, Plastics — Methods for determining the density of non-cellular plastics — Part 1: Immersion method, liquid pyknometer method and titration method ISO 1478, Tapping screws thread ISO 4892-2, Plastics — Methods of exposure to laboratory light sources — Part 2: Xenon-arc lamps ISO 8124-3, Safety of toys — Part 3: Migration of certain elements ISO 9239-1, Reaction to fire tests for floorings — Part 1: Determination of the burning behaviour using a radiant heat source ISO 11359-2, Plastics — Thermomechanical analysis (TMA) — Part 2: Determination of coefficient of linear thermal expansion and glass transition temperature ISO 11664-1, Colorimetry — Part 1: CIE standard colorimetric observers ISO 11664-2, Colorimetry — Part 2: CIE standard illuminants ISO 11664-4, Colorimetry — Part 4: CIE 1976 L*a*b* Colour space ISO 12460-4, Wood-based panels-Determination of formaldehyde release ISO 18314-1, Analytical colorimetry — Part 1: Practical colour measurement (in preparation) EN 15534-1, Composites made from cellulose-based materials and thermoplastics (usually called wood polymer composites (WPC) or natural fibre composites (NFC)) — Part 1: Test methods for characterization of compounds and products #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1 ## natural fibre composite #### NFC product made thereof being the result of the combination of one or several cellulosic materials with one or several thermoplastics #### 3.2 #### solid type board board that have a totally filled cross section Note 1 to entry: It can be fixed to the supports by using anchoring clips or screws. #### 3.3 #### structured type board board that have hollow parts in the cross section Note 1 to entry: It can be fixed to the supports by using anchoring clips or screws. Note 2 to entry: It is available e.g. in hollow, honeycomb, and arch types. # 4 Test specimens # iTeh STANDARD PREVIEW Unless otherwise specified, test specimens having the actual thickness and width of the product shall be used for testing. Sampling may be agreed between the supplier and the applicant. ### 5 Conditioning # ISO 16616:2015 https://standards.iteh.ai/catalog/standards/sist/0e55a805-6bc3-4fa8-a7ed- Unless otherwise specified in the relevant test method, the test specimens shall be conditioned during at least 72 h in the standard atmosphere 23/50 according to ISO 291 [(23 \pm 2) °C, (50 \pm 10) % RH]. ### 6 Test method # 6.1 Density ## 6.1.1 Test method The density of NFC materials shall be determined according to ISO 1183-1 Method A (immersion method). #### 6.1.2 Test specimens The density of NFC materials shall be measured using test specimens which the mass is at least 1,0 g. #### 6.1.3 Immersion liquid Use freshly distilled or deionised water containing not more than 0,1 % of a wetting agent to help removing air bubbles. The liquid with which the test specimens come into contact during the measurement shall have no effect on the test specimens. #### 6.1.4 Procedure Weigh the test specimen, to the nearest 0,1 mg, in air while suspended with a wire of maximum diameter 0,5 mm. Record the mass of the test specimen. Immerse the test specimen into the immersion liquid. The temperature of the immersion liquid shall be (23 ± 2) °C. Remove any adhering air bubbles with a fine wire before weighing the mass of the test specimen in the liquid. Weigh the immersed test specimen to the nearest 0,1 mg. Calculate the density ρ_s , in grams per cubic centimetre, of the test specimen at (23 ± 2) °C, using Formula (1): $$\rho_S = \frac{\rho_W \times m_{S,A}}{m_{S,A} - m_{S,IL}} \tag{1}$$ where ρ_w is the density of water at 23 °C (=0,998 2 g • cm⁻³); $m_{S,A}$ is the mass, in grams, of the test specimen in air; $m_{S,IL}$ is the mass, in grams, of the test specimen in the immersion liquid. ## 6.2 Maximum bending load #### 6.2.1 Test specimens Use the width and thickness of the product as the width and thickness of the test specimen; and the length of the test specimen shall be 100 mm longer than the span length of the supports of the actual construction. If the span length of the supports is not specified, choose 600 mm as a length of specimen. # 6.2.2 Test method (standards.iteh.ai) For the maximum bending load test, determine the radius of the pressing rod and the supports, and the testing speed in accordance with ISO/178, and then measure the maximum bending load by positioning the test specimen as shown in Figure 10 The side which is exposed upwards in construction shall be placed upwards for maximum bending load test. Perform the test using three specimens, and then obtain the mean value. Dimensions in millimetres #### Key - 1 test specimen - 2 applied load - L length of the test specimen Figure 1 — Testing apparatus for the determination of the maximum bending load # 6.3 Bending creep strain ### 6.3.1 Test specimens The dimensions of the specimen for the bending creep strain test shall follow those of <u>6.2.1</u>. #### 6.3.2 Test method The testing apparatus as defined in 6.2 shall be used in the bending creep test. Increase the load to 850 N within 5 s in accordance with ISO 899-2, and, after maintaining this loaded state for 312 h, calculate the bending creep strain according to Formula (2) after durations of 168 h and 312 h at (23 ± 2) °C or durations of 48 h and 96 h at (50 ± 5) °C. The side which is exposed upwards in construction shall be placed upwards for bending creep strain test. Perform the test using three specimens, and then obtain the mean value. $$\varepsilon_t = \frac{600s_t \times h}{I^2} (\%) \tag{2}$$ where - ε_t is bending creep strain; - S_t is the central deformation between the supports at time (t), expressed in millimetres; - h is the thickness of the test specimen, expressed in millimetres; - L is the distance between the supports, expressed in millimetres. #### 6.4 Impact resistance ISO 16616:2015 https://standards.iteh.ai/catalog/standards/sist/0e55a805-6bc3-4fa8-a7ed-685d1000d149/iso-16616-2015 #### 6.4.1 Test specimens The dimensions of the impact resistance test shall follow those of 6.2.1. #### 6.4.2 Test method If supports are used in the test, position and fix the test specimen on the supports, drop a steel ball (weighing $1\,042\pm5$ g and measuring 64 mm in diameter) from a height of 100 cm. In case of solid type, record the indents to an accuracy of 0.1 mm. And in case of structure type, record the cracks or indents to an accuracy of 0.1 mm. If no support is used in the construction, fix the specimen at a height of 10 cm or more from the bottom, as shown in Figure 2. Perform the tests in two kinds of conditions as described below and record the results. The impact position can be decided by testing body and the client, but the weakest positions except edges are recommended. For testing at the room temperature condition, maintain the test specimens at (23 ± 2) °C and (50 ± 10) % relative humidity for 3 d or more. For testing at low temperature condition, maintain the test specimens at (-30 ± 2) °C for 24 h and immediately perform the test within 2 min. Dimensions in millimetres #### Key - 1 test specimen - 2 supports Figure 2 — Impact resistant testing apparatus # 6.5 Impact strength ## 6.5.1 Test specimens Test specimens of type 1 according to ISO 179-1 shall be used. If a part of the product is used as the test specimen, the thickness may be up to 10,2 mm. Where, the test specimen shall have the side to be exposed outside after construction. https://standarus.hee.al.cata.blg.tandarus.sen.gth.test.specimen.ed- 685d1000d149/iso-16616-2015 Dimensions in millimetres | Туре | Length (l) | Width (b) | Thickness (h) | Distance between supports (L) | | | | |---|------------|------------|---------------|-------------------------------|--|--|--| | #1 | 80 ± 2 | 10,0 ± 0,2 | 4,0 ± 0,2 | 62 ± 0,5 | | | | | NOTE The specimen dimensions (thickness, h, width, b, and length, l) are defined by $h < \le b < l$. | | | | | | | | #### 6.5.2 Test method The unnotched test specimens designated as ISO 179-1 shall be used. The impacting side shall be that is to be exposed after construction. The impact strength (a_{cu}), expressed in kJ/m², is calculated using 5 test specimens and Formula (3). $$a_{CU} = \frac{E_c}{h \times b} \times 10^3 \tag{3}$$ where - E_c is the corrected absorption energy, expressed in Joule, caused by the rupture of a test specimen; - *h* is the thickness of the specimen, expressed in millimetres; - *b* is the width of the specimen, expressed in millimetres.