INTERNATIONAL STANDARD

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MET ACHAPODIAN OPPAHMALINA TIO CTANDAPTMALINA ORGANISATION INTERNATIONALE DE NORMALISATION

Shipbuilding – Dimensions and sectional properties of aluminium alloy sections for marine use

Construction navale – Dimensions et caractéristiques des sections des profilés en alliages d'aluminium pour usage maritime

UDC 629.12 : 669.715-42

Ref. No. ISO 1175-1976 (E)

Descriptors : shipbuilding, sections, aluminium alloys, dimensions, cross sections, linear density, materials specifications.

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

Prior to 1972, the results of the work of the Technical Committees were published as ISO Recommendations; those documents have subsequently been transformed into International Standards. As part of that process, in 1973 Technical Committee ISO/TC 8, *Shipbuilding*, reviewed ISO Recommendation R 1175-1970 and found it suitable for transformation. International Standard ISO 1175-1974 therefore replaced ISO Recommendation R 1175-1970.

ISO Recommendation R 1175-1970 had been approved by the Member Bodies of the following countries :

Australia	Israel	Spain
Belgium	Italy	Sweden
Czechoslovakia	Japan	Thailand
Egypt, Arab Rep. of	Netherlands	CTANTarkeyDD DDEV/IEW/
France	New Zealand	STAN United Kingdom PREVIEW
Germany	Norway	Yuqoslavia
Greece	Philippines	(standards.iteh.ai)
India	Poland	

The Member Body of the following country had expressed disapproval of the Recommendation on technical grounds, and also disapproved its transformation 100a-4317-96a1into an International Standard : c38b13412db1/iso-1175-1976

U.S.S.R.

ISO 1175-1976, the second edition of this International Standard, contains the new sub-clauses 3.6 and 3.7, which were circulated, in the form of an Addendum, to the Member Bodies in September 1974.

This Addendum has been approved by the Member Bodies of the following countries :

Australia	France	Romania
Austria	Germany	South Africa, Rep. of
Belgium	Mexico	Turkey
Bulgaria	Netherlands	United Kingdom
Czechoslovakia	Norway	U.S.S.R.

The Member Bodies of the following countries expressed disapproval of the Addendum on technical grounds :

Italy Poland

This second edition cancels and replaces ISO 1175-1974.

$\ensuremath{\mathbb{O}}$ International Organization for Standardization, 1976 \bullet

Printed in Switzerland

Shipbuilding – Dimensions and sectional properties of aluminium alloy sections for marine use

iTeh STANDARD PREVIEW

(standards.iteh.ai)

1 SCOPE AND FIELD OF APPLICATION

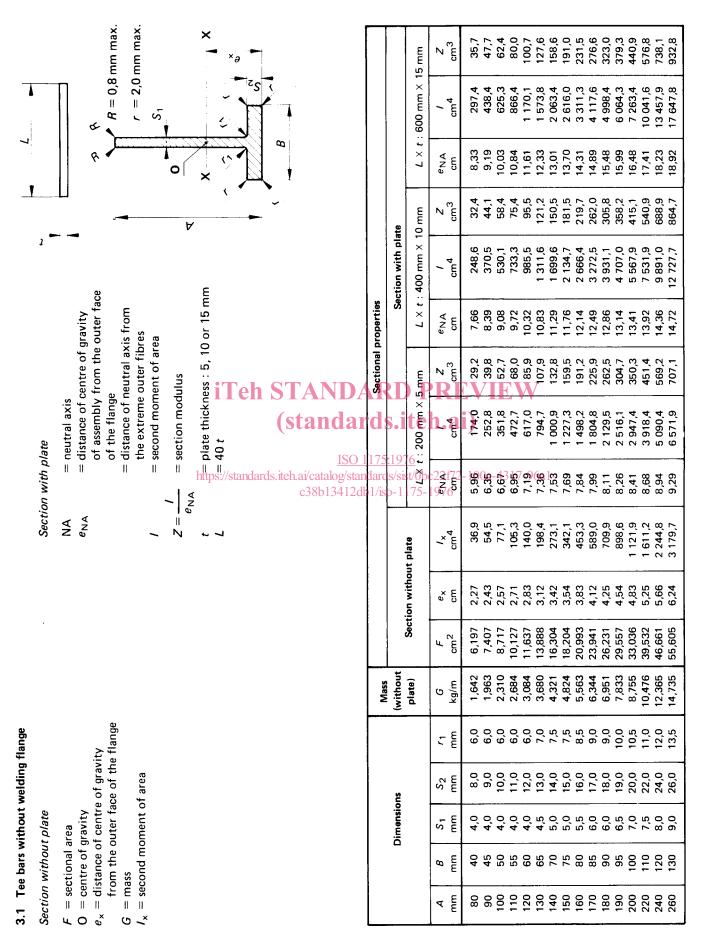
- symmetrical bulb plates with trapezoidal head This International Standard specifies dimensions, sectional 1175:1970 without welding flange,

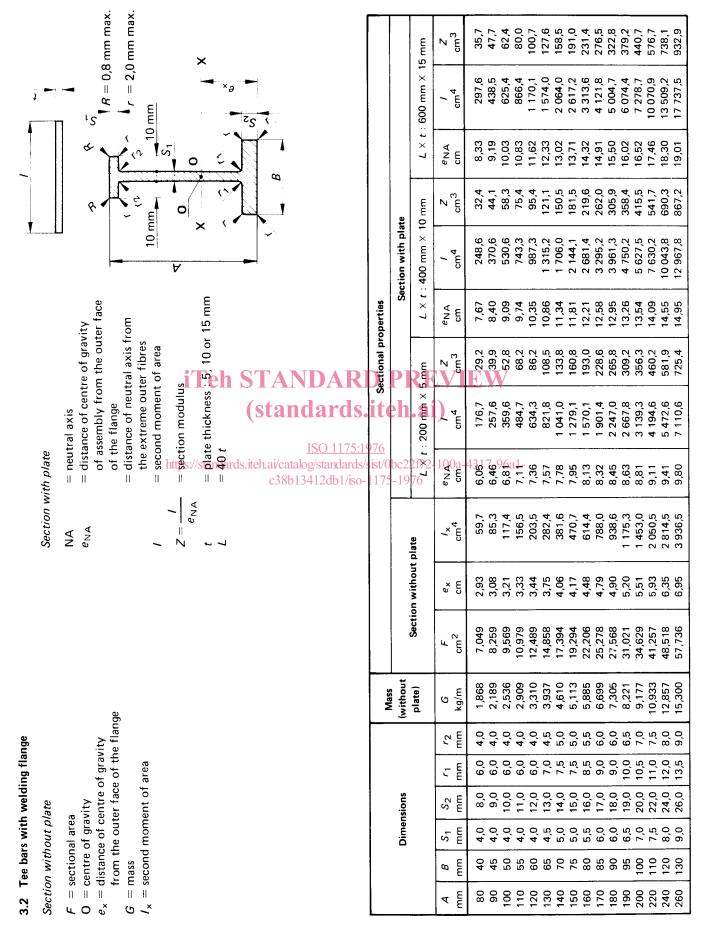
properties and masses per unipstength of stuminum alloyndards/sist/06,22772-100,243 build plates with trapezoidal head sections, with and without welding flange, for mailine 4use b1/iso-11 without welding flange.

the plate.

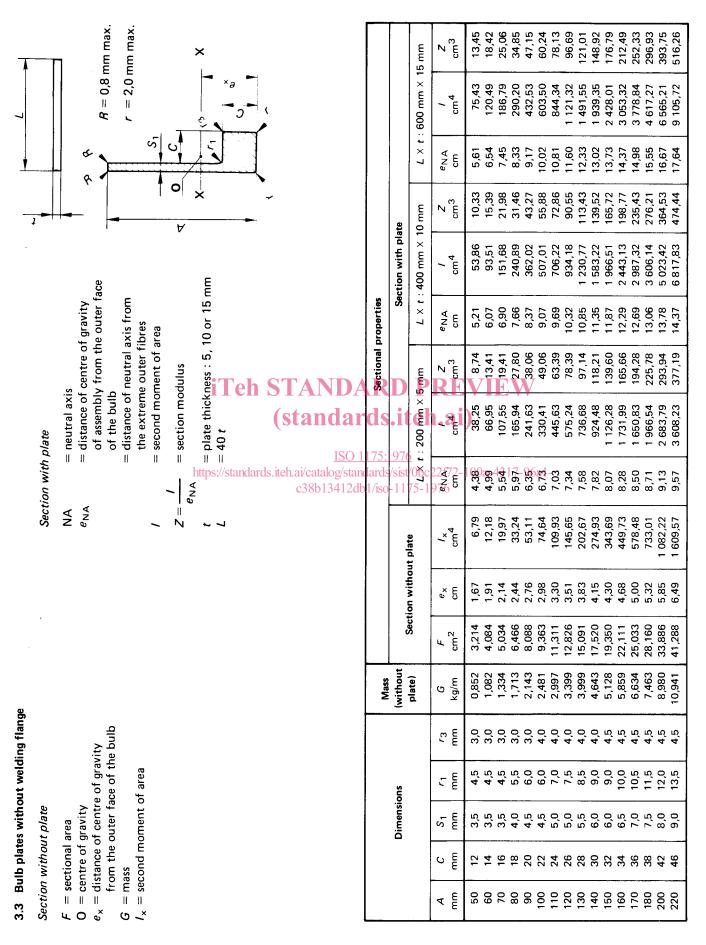
2 CLASSIFICATION

The dimensions, sectional properties and masses per unit length of the following types of aluminium alloy section are given in clause 3 :


- tee bars without welding flange;
- tee bars with welding flange;
- bulb plates without welding flange;
- bulb plates with welding flange;
- bulb angle;


3 DIMENSIONS, SECTIONAL PROPERTIES AND MASSES PER UNIT LENGTH

The calculated masses in kilograms per metre, shown in the tables, are based on an average density of 2,65 kg/dm³.


Where $e_{NA} > A$, the neutral axis lies in the plate.

Where $e_{NA} < \frac{A+t}{2}$, the neutral axis is closer to the outer face of the tee bar or bulb plate than to the upper face of

3

××	<u> </u>			<u> </u>										-		
= 0,8 mm max.			15 mm	с ^щ и	13,56	18,51	25,13	47,19	60,27	96,68	120,99	148,88	212,42	252,24	296,83 393,64	516,22
			: 600 mm × 1	/ cm4	75,99	120,97	187,16 290.45	432,72	603,59 844-39	1 121,37	1 491,75	1 939,94 2 429,19	3 055,66	3 783,02	4 624,22 6 580,17	9 136,38
			$L \times t$	en A cm	5,60	6,53	7,45 8,37	9,17	10,02	11,60	12,33	13,74	14,39	15,00	16,72	17,70
		te	0 mm	z cm ³	10,37	15,42	21,99	43,25	55,85 77 87	90,51	113,38	165,72	198,82	235,57	276,48 365,14	475,71
	S	Section with plate	<i>t</i> : 400 mm × 10 mm	/ cm ⁴	54,02	93,59	0/'161 240.92	362,18	507,46 707 37	936,31	1 234,81	1 976,72	2 459,06	3 011,05	3 040,28 5 083,22	6 922,04
5 mm	Sectional properties	ŝ	L × t :	en A cm	5,21	6,07	08,9 7,66	8,37	9,09 9,71	10,35	10,89	11,93	12,37	12,78	13,17	14,55
e of gravit the oute of area 0 or 1	Sectional	РТ	5 mm	z cm ³	8,72	13,40	78.41	38,17	49,26 63 77	78,97	98,07	141,45	168,27	197,83	301,11	388,17
<i>late</i> neutral axis distance of centre of gravity of the bulb distance of centre of gravity of the bulb distance of centre of gravity of the bulb distance of neutral axis from the extreme outer fibres second moment of area section moduluus plate thickness : 0 10 or 15 mm dot distance of neutral axis from the extreme outer fibres section moduluus distance of neutral axis from the extreme outer fibres second moment of area distance of neutral axis from the extreme outer fibres section moduluus distance of neutral axis from distance of neutral axis from the extreme outer fibres section moduluus distance of neutral axis from the extreme outer fibres section moduluus distance of neutral axis from distance of neutral axis from the extreme outer fibres section moduluus distance of neutral axis from distance of neutral axis from distance of neutral axis from distance of neutral axis from distance of neutral axis from distance of neutral axis from distance of n	ite	eh	200 mm ×) ⁴	38,39	67,45 400 11	168.61	246,95	338,82 459 76	595,23	766,83	307,32 1 181,81	1 447,48	1 750,65	2 876,23	3 897,20
<i>th plate</i> <i>d th plate</i> <i>d th plate</i> <i>d th plate</i> <i>d the blate</i> <i>d the bulb</i> <i>d the bulb <i>d the bulb</i> <i>d the bulb <i>d the bulb</i> <i>d the bulb <i>d the bulb</i> <i>d the bulb <i>d the bulb <i>d the bulb</i> <i>d the bulb <i>d the bulb</i> <i>d the bulb <i>d the bulb <i>d the bulb <i>d the bulb <i>d the bulb <i>the bulb <i>d the bulb</i> <i>d the bulb <i>d the bulb</i> <i>d the bulb <i>d </i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	<u>7/6</u> sist/0 1175	bc22 -197	r 172- 172- 16	100a- cm ²	404	ю, г 20	6 0 0 0 0 0	6,47	6,88 7 21	7,54	7,82	8,35	8,60	8,85	9,55	10,04
Section with plate NA NA neuron P_{AA} and P_{AA} an		Cection without plate		/× cm ⁴	13,14	22,39 25,49	54.70	84,18	114,93 164.67	213,40	390,76	476,37	614,22	779,63	1411,40	2 062,80
		n withc		ex cm	2,30	2,56	3.06	3,40	3,62 3,95	4,15	4,49	5,02	5,36	5,69	6,56	7,23
		Certio		ج دm ²	4,030	4,900	7,317	9,058	10,333 12 401	13,917	16,303	20,688	23,575	26,626 20,025	35,743	43,418
	Mass	(without	piate/	G kg/m	1,068	1,298	1,939	2,400	2,738 3 286	3,688	4,320	5,482	6,247	7,056	9,472	11,506
<u>e</u>				r3 mm	3,0	3,0	0,0 0,0	3,0	4,0 4,0	4,0	4 v 0 v	γ 14 1	4,5	4 z 10 a	4 4 Σ	4,5
g flanç avity the bul				7, 2 mm	3,5	ທີ່ ຕໍ່ເ	0,4 0,0	4,5	4 G	5,0	ທີ່ ເບັດ	0,0 0,0	6,5	0, 1	v, 0, , 0	9,0
veldin ce of 1 ce area		suc		ร นี้ย	4,5	4 v 10 u	τΩ	6,0	6,0 7,0	7,5	6 0 0	0,0	10,0	10,5	12,0	13,5
Bulb plates with welding flange on without plate sectional area centre of gravity distance of centre of gravity from the outer face of the bulb mass second moment of area		Dimensions		S ₂ mm	4,0	4 4	14 0	4,5	4 G	5,0	ດິດ	0,0	6,5	о, г и	0 0 0	0'6
 3.4 Bulb plates with 3.4 Bulb plates with Section without plate F = sectional area O = centre of gravity e_x = distance of centri from the outer f G = mass I_x = second moment 		۵		s1 mm	3,5	ເດັດ ເບັດ	0,4 0,0	4,5	4 0 0	5,0	ດັດ ທີ່	0,0	6,5	0, r 0, r	0,0	0'6
Bulb ion wi centr from secon secon				ပဋ		14			22 2 4		30 30 30	32 8		99 a	642	46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				₹ m	50	09	80	6	100	120	130	150	160	170	200	220

L

Ś

35 Bulk margin Section with plane Section with plane C = extrem 5 darker N = faultal axis C = extrem 5 darker N = faultal axis = faultal axis C = extrem 5 darker N = faultal axis = faultal axis C = extrem 5 darker N = faultal axis = faultal axis L = second moment of axis N = faultal axis = faultal axis L = second moment of axis N = faultal axis = faultal axis L = second moment of axis N = faultal axis = faultal axis L = second moment of axis N = faultal axis N = faultal axis L = second moment of axis N = faultal axis N = faultal axis L = second moment of axis N = faultal axis N	ن ن	ſ				T								
Control regions Section with plate Gention with plate Section with plate Control regions Section with plate Control regions Control regions Section with plate Control regions Section modulus Control regions Control regions Section with plate Control regions Control regions <th col<="" td=""><td>и ли ли ли ли ли ли ли ли ли</td><td></td><td></td><td></td><td>5 mm</td><td>cm³</td><td>8,01 9,76</td><td>12,99</td><td>24,14 33,67</td><td>44,08 58,44</td><td>75,99 96,67</td><td>120,96 148.82</td><td>176,67</td></th>	<td>и ли ли ли ли ли ли ли ли ли</td> <td></td> <td></td> <td></td> <td>5 mm</td> <td>cm³</td> <td>8,01 9,76</td> <td>12,99</td> <td>24,14 33,67</td> <td>44,08 58,44</td> <td>75,99 96,67</td> <td>120,96 148.82</td> <td>176,67</td>	и ли ли ли ли ли ли ли ли ли				5 mm	cm ³	8,01 9,76	12,99	24,14 33,67	44,08 58,44	75,99 96,67	120,96 148.82	176,67
Entit angles Section with place room withour place = econd moment of area econd moment of area = distance of centre of gravity econd moment of area = distance of centre of gravity econd moment of area = distance of centre of gravity econd moment of area = distance of centre of gravity econd moment of area = distance of centre of gravity econd moment of area = distance of centre of gravity econd moment of area = distance of centre of gravity econd moment of area = distance of centre of gravity econd moment of area = distance of centre of gravity econd moment of area = distance of centre of gravity econd moment of area = distance of centre of gravity econd moment of area = distance of centre of gravity econd moment of area = distance of centre of gravity econd moment of area = distance of centre of gravity econd moment of area = distance of centre of gravity econd moment of area = distance of centre of gravity econd moment of area = distance of centre of gravity econd moment of area = d					600 mm ×	ر دm4	29,61 45,49	72,91	180,15 280,83	406,17 586,78	823,26 1 121,41	1 491,99 1 940,73	2 430,73	
But angles Section with plate Galarnee of term the outer face Galarnee of term the outer face Controm with plate Controm with plate Factor with plate NA = second moment of same A Section with plate Factor mediations Factor mediations Factor mediations Factor mediations Factor mediations Factor modulus Factor modulus Factor mittion the sum factor Colspan="2">Colspan="2">Colspan="2">Colspan="2" Factor modulus Factor modulus Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th <<="" colspa="2" td=""><td></td><td></td><td></td><td></td><td></td><td>ena cm</td><td>3,70 4,66</td><td>5,61 6,55</td><td>7,46 8,34</td><td>9,21 10,04</td><td>10,83 11,60</td><td>12,33 13.04</td><td>13,76</td></th>	<td></td> <td></td> <td></td> <td></td> <td></td> <td>ena cm</td> <td>3,70 4,66</td> <td>5,61 6,55</td> <td>7,46 8,34</td> <td>9,21 10,04</td> <td>10,83 11,60</td> <td>12,33 13.04</td> <td>13,76</td>						ena cm	3,70 4,66	5,61 6,55	7,46 8,34	9,21 10,0 4	10,83 11,60	12,33 13.04	13,76
Bulb angles Section with plate Section with plate :form vitrour plate = sectional area NA = neutral axis = section area NA = neutral axis of assembly from the outer face = control of gavity = disance of cante of gavity is assembly from the outer face = control of gavity = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area				e	um 0	z cm ³	4,01 6,35	9,88 14,74	21,10 30,34	40,46 54,21	70,89 90,48	113,35 139 <u>.48</u>	165,74	
Bulb angles Section with plate Section with plate :form vitrour plate = sectional area NA = neutral axis = section area NA = neutral axis of assembly from the outer face = control of gavity = disance of cante of gavity is assembly from the outer face = control of gavity = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area = second moment of area	i ×		s	ction with pla	400 mm × 1	/ cm ⁴	13,62 27,45	51,59 89,81	146,18 233,39	341,90 495,06	692,66 938,22	1 239,16 1 598.70	1 988,99	
Bulb angles Section with plate if auth angles Section with plate = sectional area NA = sectional area NA = sectional area NA = fistance of centre of gravity from the outer face of the bulb = fistance of centre of gravity from the outer face of the bulb = mass = second moment of area = sec	а Эранана Эрананананананананананананананананананан		propertie			en A cm	3,40 4,33	5,22 6,09	6,93 7,69	8,45 9,15	9,77 10,37	10,93 11.46	12,00	
Bulb anglesSection with platefor without plateSection with platefor without plateNAe sectional areaNAe sectional areaNAe fistance of gravityof the bulbe fistance of gravityof the bulbe fistance of the bulbe distance of the bulbe maxNAe fistance of the bulbe distance of the bulbe maxNAe maxe distance of the bulbe distance of the bulbe distance of the bulbe distance of the bulb <td>of gravity axis from fibres area area</td> <td>NDARD</td> <td>Sectional</td> <td>RI</td> <td>u u</td> <td>cm³</td> <td>2,65 4,98</td> <td>8,33 12,86</td> <td>18,72 26,99</td> <td>36,09 48,14</td> <td>62,61 79,44</td> <td>98,93 121,16</td> <td>143,43</td>	of gravity axis from fibres area area	NDARD	Sectional	RI	u u	cm ³	2,65 4,98	8,33 12,86	18,72 26,99	36,09 48,14	62,61 79,44	98,93 121,16	143,43	
Bulb angles Section with plate ::for without plate Section with plate ::entre of gravity Image: Section with plate ::entre of gravity MA ::entre of gravity Section with plate ::econd moment of area Image: Section with plate ::econd moment of area Image: Section with plate ::econd moment of area Image: Section without plate ::econd moment of area :exond ::econd moment of area :exond ::econd area <	ess :: est	ndards.it	teh	1.a	200 mm ×	/ cm ⁴	7,83 18,55	36,96 65,29	105,71 165,33	237, 4 9 335,80	460,00 611,68	796,70 1 016 31	1 243,86	
Bulb angles Evention without plate = sectional area = centre of gravity distance of centre of gravity = distance of centre of gravity = distance of centre of gravity = mass = second moment of area mm mm mm mm mm mm mm mm 277 10 30 277 14,5 30 30 277 14,5 30 30 0,778 28 30 4,5 30 30 0,778 2,375 277 14 7,0 4,45 3,0 3,07 1,191 4,295 2,476 00 277 14,5 3,0 3,00 1,191 4,27 2,695 2,078 2,375 2,193 3,75 2,275 1,63 3,76 2,641 3,76 2,641 3,76 2,641 2,935 2,676 2,670 2,670 2,670 2,670 2,670 2,670 2,675 2,675 2,676 2,676 2,	<i>h plate</i> <i>h plate</i> of assence of assence as assence assence assence assenco assence assence assence assence a	atalog/standards/sist	<u>5</u> /0bc2 75-19	22f72	*		2,9 <mark>5</mark> 3,7 3	4,44 5,08	5,65 6,13	6,58 6,98	7,35 7,70	8,05 8,39	8,67	
Bulb angles Evention without plate = sectional area = centre of gravity distance of centre of gravity = distance of centre of gravity = distance of centre of gravity = mass = second moment of area mm mm mm mm mm mm mm mm 277 10 30 277 14,5 30 30 277 14,5 30 30 0,778 28 30 4,5 30 30 0,778 2,375 277 14 7,0 4,45 3,0 3,07 1,191 4,295 2,476 00 277 14,5 3,0 3,00 1,191 4,27 2,695 2,078 2,375 2,193 3,75 2,275 1,63 3,76 2,641 3,76 2,641 3,76 2,641 2,935 2,676 2,670 2,670 2,670 2,670 2,670 2,670 2,675 2,675 2,676 2,676 2,	ection wit IA ·= _/ e_NA			ut plate		/ _x cm ⁴	2,7 4 6,36	12,15 20,58	32,11 56,21	79,01 122,95	185,00 265,25	372,33 504.67	616,99	
Rulb angles Firon without plate = sectional area = centre of gravity = distance of centre of gravity from the outer face of the bulb = mass = second moment of area = mass = second moment of area mmm mm mmm mm mmm mm mm mm 27 12 30 30 09748 2 27 14 30 445 30 30 01914 4 20 27 14 30 30 01914 4 2 28 55 35 35 35 30 11316 7 20 27 16 30 30 11316 7 7 28 55 55 44 30 30 11366 7 21 12 30 0593 2 11366 7 1430 143 143 143 143 143 143 143 144 2<				n witho		ex c æx	1,63 1,95	2,22 2,46	2,67 3,12	3,32 3,76	4,21 4,64	5,09 5,52	5,72	
Bulb anglestrion without plate= sectional area= centre of gravityfrom the outer face of the bulbfrom the outer face of the bulb= mass= second moment of areanmm				Sectic	1	cm ²	2,275 2,935	3,675 4,495	5,395 7,081	8,191 10,169	12,438 14,872	17,595 20.468	22,299	
Bulb angles:tion without plate= sectional area= centre of gravity= distance of centre of gravityfrom the outer face of the bulb= mass= second moment of area= secon			Mass	(without plate)	. (с kg/m	0,603 0,778	0,974	1,430 1,876	2,171 2,695	3,296 3,940	4,663 5,424	5,909	
						رع ۳۳	3,0 3,0	0 0 0 0	0, 0, 0, 0,	3,0 4,0	4 4 0 0	4 Å 0 Å	4,5	
	ity e bulb				-	7 m m 7	3,0 3,0	0, 0, 7, 0	3,5 3,5	3,5 4,0	4,5 5,0	5,5 6,0	6,0	
	of grav area			su		۲. ۳	4 5 4 5	44 0,0	4 C C C	5,5 6,0	7,0	8,5 0,0	0,0	
	<i>late</i> a vity er facc er tacc			mensio		sΕ	3,0 3,0	3,0 3,0	3,5 3,5	3,5 4,0	4,5 5,0	5,5 0,0	6,0	
	igles iout protocut protocut protocut protocut is e of critication of grant momunication of the out			Di		υ E	8 0	12	18	20 22	24 26	28 30	32	
	Bulb an witt sectior from th nass econd					в шш	27 27	27 27	27 32	36 33	41 45	50 54	54	
						A m m	40 30	20 00	80	90 00	110	130	150	

6

						N	cm ³	9,03	11,13	20.4	26,18	34,56	47,2	79,3	ຄູ່ຕ	ι ο	ω
					15 mm	· v	C	5		20	26	34	47	64	168.3	250,0	325,8
	, ·	Inclination 45°			L × t : 600 mm × 15 mm	1	cm4	42,46	62,53	100,0 150,64	220,15	320,67	479,97	930,77	2 481.67	3 990	5 630
-	7		8 2 2		r ×	ena	cm	4,70	5,62	6,98 7.52	8,44	9,29	10,15	11,75	13,40	15,97	17,30
	1			ate	10 mm	Z	cm ³	4,57	7,60	15,80	23,58	32,6	43,0	73,7	162.0	235,8	304,8
		v		Section with plate	$L \times t : 400 \text{ mm} \times 10 \text{ mm}$,	cm4	20,06	40,0	102.67	172,78	265,2	381,2	749,2	1 203 2 012	3 113	4 306
-		avity outer face a or 15 mm	ıl properties	Ñ	$L \times t$	ena	сш	4,38	5,29	6,52	7,32	8,14	8,87	10,14	12.42	13,20	14,15
		centre of gr from the of ter fibres iss : from the of ter fibres iss : frandards	Sectional properties	PR eh.	Emme		cm3	33	6,56	15,12	22,25	31,10	40,25	67,37 07.6	97,0 135,0	192,6	242,5
	ate	autral axis stance of assembly assembly in assembly in a stance of in a	<u>1976</u> /sist/0	bc22	x t :200 mm x	00a-	₽ ₩ 431	11 [,] 29		on,1c 83,87	135,78	202,2	280,2	514,2	1 230	1 825	2 440
nge	Section with plate		-1175	-197	$L \times t$	ena B	сm	3,63	4,29	4,98 5,54	6,08	6,51	6,98	7,64	0,30 9,13	9,50	10,06
t welding fla	Sectic	G N N N N N N N N N N N N N N N N N N N			: plate	×′	cm4	2,39	6,36	20,37	32,78	49,20	74,20	147,20 270	448	737	1 082
id withou				Section	without p	e×	сц	1,48	1,89	2,60	2,78	2,96	3,37	3,90	5,27	5,91	6,55
coidal hea		٩		(without relate)		Ľ	cm ²	1,55	2,66	3,44 4,31	5,41	6,50	7,85	10,95	18,59	24,46	28,87
Symmetrical bulb plates with trapezoidal head without welding flange Section without plate		sectional area centre of gravity distance of centre of gravity from the outer face of the bulb mass second moment of area				ს	kg/m	0,42	0,72	0,33 1,16	1,46	1,76	2,12	2,96	5,01	6,61	7,80
	olate	 = sectional area = centre of gravity = distance of centre of gravity from the outer face of the b = mass = second moment of area 				<i>ر</i>	ш ш	2,0	2,5	3, 5 3, 5	4,0	4,0	4,5	0 0 9 0	0,5	0'6	10,0
iymmetrical bulb plate Section without plate		 = sectional area = centre of gravity = distance of centr from the outer f = mass = second moment 		Dimensions		s,	ш Ш	2,5	3,5 7	ς, 4 Ο (4	4,0	4,0	4,5	0,0 9,0	0,0 0,0	7,5	8,0
						8	шш	13	17	21	25	29	31	89 F	5 4 84	54	58
3.6 Sy	స	μΟυ [×] σ [×]				۲	E E	40	2 20	02	80	06	100	120	160	180	200

1

K