INTERNATIONAL STANDARD

First edition 2012-06-01

Geotechnical investigation and testing — Geohydraulic testing —

Part 6:

Water permeability tests in a borehole using closed systems

iTeh STReconnaissance et essais géotechniques — Essais géohydrauliques — Partie 6: Éssais de perméabilité à l'éau dans un forage en tube fermé (standards.iteh.ai)

<u>ISO 22282-6:2012</u> https://standards.iteh.ai/catalog/standards/sist/970c50b8-1809-427f-a2f6-64bd2a6fda34/iso-22282-6-2012

Reference number ISO 22282-6:2012(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 22282-6:2012</u> https://standards.iteh.ai/catalog/standards/sist/970c50b8-1809-427f-a2f6-64bd2a6fda34/iso-22282-6-2012

COPYRIGHT PROTECTED DOCUMENT

© ISO 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 22282-6 was prepared by the European Committee for Standardization (CEN) Technical Committee CEN/TC 341, *Geotechnical investigation and testing*, in collaboration with Technical Committee ISO/TC 182, *Geotechnics*, Subcommittee SC 1, *Geotechnical investigation and testing*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

ISO 22282 consists of the following parts, under the general title *Geotechnical investigation and testing* — *Geohydraulic testing*: **Teh STANDARD PREVIEW**

- Part 1: General rules
 - (standards.iteh.ai)
- Part 2: Water permeability tests in a borehole using open systems
- Part 3: Water pressure tests in rock ISO 22282-6:2012 https://standards.iteh.ai/catalog/standards/sist/970c50b8-1809-427f-a2f6-
- Part 4: Pumping tests 64bd2a6fda34/iso-22282-6-2012
- Part 5: Infiltrometer tests
- Part 6: Water permeability tests in a borehole using closed systems

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 22282-6:2012</u> https://standards.iteh.ai/catalog/standards/sist/970c50b8-1809-427f-a2f6-64bd2a6fda34/iso-22282-6-2012

Geotechnical investigation and testing — Geohydraulic testing —

Part 6: Water permeability tests in a borehole using closed systems

1 Scope

This part of ISO 22282 specifies requirements for the determination of the local permeability in soils and rocks below or above the groundwater table in a closed system by the water permeability tests as part of the geotechnical investigation services according to EN 1997-1 and EN 1997-2.

The tests are used to determine the permeability coefficient k in low permeability soil and rock lower than 10^{-8} m/s. It can also be used to determine the transmissivity T and the storage coefficient S.

NOTE The water pressure test in rock is covered by ISO 22282-3.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies tandards.iten.al

ISO 14688-1, Geotechnical investigation and testing 2012 Identification and classification of soil — Part 1: Identification and description https://standards.iteh.ai/catalog/standards/sist/970c50b8-1809-427f-a2f6-

ISO 14689-1, Geotechnical investigation and testing ²⁸²-Identification and classification of rock — Part 1: Identification and description

ISO 22282-1, Geotechnical investigation and testing — Geohydraulic tests — Part 1: General rules

ISO 22475-1, Geotechnical investigation and testing — Sampling method and groundwater measurements — Part 1: Technical principles for execution

3 Terms, definitions and symbols

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 22282-1 apply.

3.2 Symbols

For the purposes of this document, the symbols given in Table 1 apply.

Symbol	Designation	Unit
Capp	apparent compressibility of the measurement device	Pa ^{−1}
Cw	compressibility of the water	Pa ⁻¹
F	shape factor	—
g	acceleration due to gravity	m.s ⁻²
h	hydraulic head	m
hst	pre-test stabilized hydraulic head	m
k	permeability coefficient	m.s ^{−1}
k ₂₀	permeability coefficient at a temperature of 20 °C	m.s ^{−1}
L	height of the cavity	m
р	pressure	Pa
Q	flow rate	m ³ .s ⁻¹
r _c	radius of the measurement cavity and of the borehole	m
S	storage coefficient	—
Т	transmissivity ($T = k L$)	m ² .s ⁻¹
t	time	S
V	volume	m ³
Vw	volume of water submitted to pressure pulse	m ³
z _c	height of the middle of the cavity in relation to the natural land $\mathbf{F}\mathbf{V}\mathbf{F}\mathbf{V}$	m
<i>z</i> capt	height of the pressure sensor in relation to the natural land	m
η	dynamic viscosity of the water	Pa.s
ρ_{W}	density of the water ISO 22282-6:2012	kg.m ^{−3}
Δh_0	variation in initial hydraulic head itch ai/catalog/standards/sist/970c50b8-1809-427f-a2f6-	m
ΔV_0	variation in initial volume 64bd2a6fda34/iso-22282-6-2012	m ³
Δp_0	variation in initial pressure	Ра

Table 1 — Symbols

4 Equipment

The basic equipment consists of the following parts (see also the example in Figure 1):

- pump or pressure source capable of injecting or removing water to the water-filled system to produce a
 pressure pulse in the test interval;
- pipes;
- single or double packer;
- shut-off valve in the pipe above the test section;
- pressure measuring and recording device in test section;
- data acquisition system.

Key

- 1 test section
- 2 inflatable packer
- 3 packer inflation device
- 4 isolating valve (bottom valve)
- 5 pressure and water temperature device
- 6 hydraulic delivery pipe
- 7 pressure and water temperature indicating and recording device
- 8 water reservoir
- 9 device for application of pressure pulse and measurement of compressibility
- 10 ground level

Figure 1 — Test equipment — Example

5 Test procedure

5.1 General

The principle of water permeability tests in a borehole using closed systems is based on an instantaneous change of the hydraulic head in a test section. The dissipation of imposed head is recorded as a function of time.

According to Figure 1, a volume of water is pressurized on a test section of a borehole closed off by one or more packers in order to determine dissipation of pressure with time.

The test can be carried out in a borehole of any orientation and diameter. The test section may be located above or below the groundwater level.

5.2 Installation of equipment

The test rod or tubing shall be installed into the borehole with the valve open.

The packer(s) shall be inflated or the sealing plug shall be installed.

5.3 Determination of the pre-test stabilized hydraulic head

5.3.1 Below water table

Below groundwater table, an initial measurement of the initial hydraulic head in the soil or rock to be tested shall be conducted:

- starting the recording system of the pressure in the test section;
- closing the isolating valve;
- monitoring the pressure, until the state of equilibrium is reached.

Monitoring shall be continued until the head variation Δh is less than 10 % of variation in initial head.

5.3.2 Above water table

iTeh STANDARD PREVIEW

In the case of a test in initially unsaturated soil, the soil around the test section shall be initially saturated before applying the pressure pulse. This saturation results in a major reduction of the suction in the vicinity of the test section.

ISO 22282-6:2012

The recommended value for the constant hydraulic head for this phase is approximately 1 m of water with respect to the ground level. The volume infiltrated during this phase shall be estimated and indicated in the test report. The duration of the infiltration phase depends largely on the permeability of the soil. Table 1 indicates the minimum duration of the saturation phase for various permeability ranges.

Table 2 — Duration of saturation phase and permeability ranges

Permeability coefficient k (m/s)				
1,10 ⁻⁸	1,10 ⁻⁹	1,10 ⁻¹⁰		
Duration of saturation phase (hours)				
3	10	20		

After the saturation phase, stabilized hydraulic head is determined according to 5.3.1.

5.3.3 Application of the pressure pulse

With the isolating valve still in the closed position, the pressure variation shall be adjusted above the valve to be produced within the test section.

The amplitude of the pressure pulse shall be limited in order to avoid all risks of hydraulic fracturing of the soil within the test section. The hydraulic head increment above ground level shall be less than 30 % of the depth of the test section.

The pressure in the test section shall be measured and recorded every second.

The isolating valve shall be opened for 2 s to allow the pressure to apply in the whole system, and then it shall be closed.

The variation in volume ΔV_0 corresponding to the variation in pressure Δp_0 of the fluid in the measurement system and in the test section shall be recorded. The values of the compressibility parameters, ΔV_0 and Δp_0 , shall be noted and used for the estimation of the compressibility of the whole system.

5.3.4 Measurement of the pressure change within the test section

The change in the excess pressure $\Delta p(t)$ produced in the system until $\Delta p(t)/\Delta p_0 \le 0,10$ shall be recorded.

Before stopping the measurements, a second determination of the compressibility parameters shall be carried out as follows:

- with the isolating value still in the closed position, a new pressure variation Δp_0 shall be adjusted to the test section;
- the isolating valve shall be opened for 2 s to allow the pressure to apply in the whole system, and then it shall be closed;
- the new variation in volume ΔV_0 corresponding to the new variation in pressure shall be determined by reading or recording;
- the compressibility coefficient shall be calculated from the parameters determined before and after the test (see Clause 6).

6 Test results

The test results are: **iTeh STANDARD PREVIEW**

- the pressure as a function of time and ards.iteh.ai)
- the variation of volume at application of the pressure pulse at the beginning and at the end of the test.

https://standards.iteh.ai/catalog/standards/sist/970c50b8-1809-427f-a2f6-64bd2a6fda34/iso-22282-6-2012

7 Reports

7.1 Field report

7.1.1 General

At the project site, a field report shall be completed. This field report shall consist of the following, if applicable:

- a) summary log according to ISO 22475-1;
- b) drilling record according to ISO 22475-1;
- c) sampling record according to ISO 22475-1;
- d) record of installation of wells and piezometers according to ISO 22475-1;
- e) record of identification and description of soil and rock according to ISO 14688-1 and ISO 14689-1;
- f) installation record according to 7.1.2;
- g) calibration record according to ISO 22282-1;
- h) record of measured values and test results according to 7.1.3

All field investigations shall be reported such that third persons are able to check and understand the results.

7.1.2 Installation record

The installation record shall be attached to the summary log and include the following essential information, if applicable:

- type of equipment; a)
- packers (including inflation method); b)
- pumps; C)
- d) pressure sensors;
- volume measuring device; e)
- dates and times of test: f)
- groundwater levels; g)
- name and signature of the test operator. h)

7.1.3 Records of measured values and test results

The record of measured values and test results shall be attached to the summary log and include the following essential information, if applicable (see also Annex A):

- name of the enterprise performing the test ANDARD PREVIEW a)
- name of the client; b)
- test date; C)

ISO 22282-6:2012

(standards.iteh.ai)

- name and number of project; https://standards.iteh.ai/catalog/standards/sist/970c50b8-1809-427f-a2f6d) 64bd2a6fda34/iso-22282-6-2012
- number of borehole; e)
- position and elevation of borehole; f)
- diameter of the casing; g)
- drilling method and drilling fluid used; h)
- test depth; i)
- length of the test section; j)
- type of test with reference to this International Standard, i.e. ISO 22282-6; k)
- weather conditions during the test; I)
- elevation of the packer(s); m)
- groundwater surface; n)
- duration of saturation phase when relevant; 0)
- p) stabilized hydraulic head h_0 ;
- test pressure as a function of time; q)
- variation of volume and pressure for compressibility determination; r)
- details of any unusual event or observation during the test; S)
- comments on observations or performed checks of importance for the interpretation; t)

u) name and signature of the test operator.

7.2 Test report

The test report shall include the following essential information:

- a) the field report (in original and/or computerized form);
- b) a graphical presentation of the test results;
- c) quality evaluation of the test execution and test results for the intended purpose of any corrections in the presented data;
- d) any limitations of the data (e.g. irrelevant, insufficient, inaccurate and adverse test results);
- e) name and signature of the responsible expert.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 22282-6:2012</u> https://standards.iteh.ai/catalog/standards/sist/970c50b8-1809-427f-a2f6-64bd2a6fda34/iso-22282-6-2012