INTERNATIONAL STANDARD

First edition 2015-09-15

Metallic materials — Leeb hardness test —

Part 3: Calibration of reference test blocks

Matériaux métalliques — Essai de dureté Leeb iTeh STPartie 3: Etalonnage des blocs de référence (standards.iteh.ai)

<u>ISO 16859-3:2015</u> https://standards.iteh.ai/catalog/standards/sist/e856abce-3a63-4db1-a25d-9531f53f2a18/iso-16859-3-2015

Reference number ISO 16859-3:2015(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 16859-3:2015</u> https://standards.iteh.ai/catalog/standards/sist/e856abce-3a63-4db1-a25d-9531f53f2a18/iso-16859-3-2015

© ISO 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Page

Contents

Forew	ord	iv				
1	Scope					
2	Normative references					
3	Manufacture of reference test blocks					
4	Calibration machine 4.1 General 4.2 Traceability 4.3 Requirements on calibration machines 4.4 Calibration of calibration machines	2 2 2 2 2 2 3				
5	Calibration procedure					
6	Number of test indentations					
7	Uniformity of hardness					
8	Marking					
9	Validity					
Annex	A (normative) Requirements for Leeb hardness calibration machines	7				
Annex Annex	B (informative) Measurement uncertainty of reference test block					
Biblio	ibliography (standards.iteh.ai) 13					

<u>ISO 16859-3:2015</u> https://standards.iteh.ai/catalog/standards/sist/e856abce-3a63-4db1-a25d-9531f53f2a18/iso-16859-3-2015

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ASO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary Information

The committee responsible for this document is ISO/TC 164, *Mechanical testing of metals*, Subcommittee SC 3, *Hardness testing*.

ISO 16859-3:2015

ISO 16859 consists of the following parts; under the general title Metallic materials - Leeb hardness test: 9531f53f2a18/iso-16859-3-2015

- Part 1: Test method
- Part 2: Verification and calibration of the testing devices
- Part 3: Calibration of reference test blocks

Metallic materials — Leeb hardness test —

Part 3: Calibration of reference test blocks

1 Scope

This part of ISO 16859 specifies a method for the calibration of reference test blocks that are used for the indirect verification of Leeb hardness testers according to ISO 16859-2 and for the periodic checking according to ISO 16859-1.

The procedures necessary to ensure metrological traceability of the calibration machine are also specified.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 16859-1, Metallic materials S Leeb hardness test — Part 1: Test method

ISO 16859-2, Metallic materials states hardness test Part 2: Verification and calibration of the testing devices

ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories 9531f53f2a18/iso-16859-3-2015

3 Manufacture of reference test blocks

3.1 The block shall be specially manufactured for use as a reference test block.

Attention is drawn to the need to use a manufacturing process which will give the necessary homogeneity, stability of texture and uniformity of surface hardness.

3.2 The uniformity of the metallic reference test block shall meet the requirements specified in <u>7.2</u> and <u>Table 3</u>.

3.3 The impact nature of a Leeb test requires a reference test block with a minimum mass and thickness, as specified in <u>Table 1</u>.

NOTE Examples of common dimensions of reference test blocks are specified in <u>Annex C</u>.

Type of impact devices	Minimum thickness	Minimum diameter	Minimum mass
	mm	mm	kg
D, DL, D+15, S, E, C	33	85	2,7
G	65	115	6,0

Table 1 — Mass and thickness requirements of reference test block

3.4 The reference test blocks shall be free of magnetism prior to calibration.

3.5 The maximum deviation from surface flatness of the top and bottom surfaces shall not exceed 0,01 mm. The surfaces of the blocks shall not be convex.

The maximum deviation from parallelism of the top and bottom surfaces shall not exceed 0,02 mm per 50 mm.

3.6 The test surfaces shall be free from damage, such as notches, scratches, oxide layers, etc., which interfere with the mechanics of the indentation process.

The mean surface roughness, R_a , ^[2] of the test surface(s) shall not exceed 0,1 µm. The sampling length, l, is 0,80 mm (see ISO 4287:1997, 3.1.9).

3.7 To provide evidence that no material is removed from the test surface(s) of the reference test block subsequent to calibration, the thickness at the time of calibration shall be marked on the test surface(s) or printed on the calibration certificate to an accuracy of 0,1 mm. Alternatively, a mark shall be placed on both the top and bottom surfaces, see 8.1 e).

ISO 16859-3:2015

4 Calibration machine:://standards.iteh.ai/catalog/standards/sist/e856abce-3a63-4db1-a25d-9531f53f2a18/iso-16859-3-2015

4.1 General

In addition to fulfilling the general conditions specified in ISO 16859-2:2015, Clause 3, the calibration machine shall also meet the requirements given in 4.2 to 4.4.

4.2 Traceability

4.2.1 Leeb primary hardness standard machines owned by national level institutions are used to calibrate primary reference test blocks in Leeb hardness for accredited Leeb hardness calibration laboratories according to ISO/IEC 17025.

4.2.2 The instruments used for the verification and calibration of the Leeb hardness calibration machine shall be traceable to national standards.

NOTE A four-level structure of the metrological chain is necessary to define and disseminate hardness scales. The metrological chain of hardness values obtained by the Leeb method is defined in ISO 16859-1:2015, Figure C.1.

4.3 Requirements on calibration machines

4.3.1 Requirements on Leeb hardness calibration machines are given in <u>Annex A</u>.

4.3.2 The resolution of Leeb hardness calibration machines shall be equal to or better than 1,0 HL.

4.4 Calibration of calibration machines

4.4.1 Leeb hardness calibration machines shall be calibrated at an interval of <12 months.

4.4.2 Leeb hardness calibration machines shall comply with the requirements defined in <u>Annex A</u>.

4.4.3 Following direct calibration, an indirect calibration shall be conducted with at least three primary reference test blocks that cover the complete range of the Leeb hardness scale, as defined in <u>Table 2</u>.

Type of impact device	Leeb hardness range for indirect calibration	Minimum repeatability	Limiting error
	HLa	$W_{ m H}$ %	$G_{ m H}$ %
	<500	1,0	±2,0
D, D+15	500 to 700	1,0	±1,5
	>700	1,0	±1,0
	<700	1,0	±2,0
DL, S	700 to 850	1,0	±1,5
	iTeh ST _{>85} NDARI	PREY,dEW	±1,0
	(steaadards.	teh.ai) ^{1,0}	±2,0
С, Е	600 to 750	1,0	±1,5
	>750 <u>ISO 16859-3:2</u>	015 1,0	±1,0
http	s://standards.iteh.ai/catalog/standards/si	st/e856abce-3a63-4db1-a25d-	±2,0
G	450 to 600	1,0	±1,5
	>600	1,0	±1,0

Table 2 — Leeb hardness ranges, minimum repeatability, and limiting error of calibration machines

Indirect calibration comprises at least 10 readings on each reference test block.

4.4.4 Calculation of error and repeatability of indirect calibration:

$$\overline{H} = \frac{1}{n} \sum_{i=1}^{n} H_{i}$$
⁽¹⁾

where

- \overline{H} is the Leeb hardness mean value;
- *H*_i is the single Leeb hardness reading.

$$b_{\rm H} = \frac{1}{n} \sum_{1}^{n} H_{\rm i} - H_{\rm CRM}$$
(2)

where

*H*_{CRM} is the Leeb hardness of primary reference test block;

 $b_{\rm H}$ is the error of Leeb hardness.

In indirect calibration, requirements concerning the limiting error of Leeb hardness are met when

$$G_H \ge |b_H(H)| + u_{CRM} \tag{3}$$

where

*G*_H is the limiting error of Leeb hardness (see <u>Table 2</u>);

 u_{CRM} is the calibration uncertainty of primary reference test blocks according to the calibration certificate for k = 1.

Standard deviation, s_H

$$s_{\rm H} = \sqrt{\frac{\sum_{i=1}^{n} (H_i - \overline{H})^2}{n-1}} \tag{4}$$

Variation coefficient, V_H

 $W_{\rm H} \ge V_{\rm H}$

$$V_{\rm H} = \frac{s_{\rm H}}{\overline{H}} \cdot 100\,\% \tag{5}$$

In indirect calibration, requirement concerning the minimum repeatability, *W*_H, (see <u>Table 2</u>) of Leeb hardness are met when: **iTeh STANDARD PREVIEW**

where $W_{\rm H}$ is the minimum repeatability of Leeb hardness (see <u>Table 2</u>).

https://standards.iteh.ai/catalog/standards/sist/e856abce-3a63-4db1-a25d-9531f53f2a18/iso-16859-3-2015

5 Calibration procedure

5.1 Reference test blocks are calibrated at a temperature of (23 ± 5) °C using Leeb hardness calibration machines conforming to <u>Clause 4</u>, using the general procedure described in ISO 16859-1.

During calibration, thermal drift shall not exceed 1 °C.

5.2 Reference test blocks are placed on a rigid steel plate of minimum thickness of 45 mm and minimum mass of 45 kg, and whose contact surface has been ground to a flatness of 0,01 mm or better. The reference test block is coupled to steel plate using a thin plastic film (thickness <0,1 mm). The plastic film shall serve for adhesion between the block and the steel plate.

6 Number of test indentations

Leeb reference test blocks can be calibrated on both block surfaces (side A and side B). During a calibration sequence, 10 indentations are made evenly distributed over the entire test surface for each side. The calibration value is calculated as the arithmetic mean of 10 single readings. The calibration value is assigned to the respective test surface.

7 Uniformity of hardness

7.1 The Leeb hardness values of a test surface A of a reference test block are denoted $H_1, H_2, ..., H_{10}$. If the block has two test surfaces, the Leeb hardness values of test surface B are denoted $H_{11}, H_{12}, ..., H_{20}$. The arithmetic mean value(s) from the Leeb hardness calibration \overline{H}_A (and \overline{H}_B) are calculated using Formula (7) and Formula (8).

(6)

$$\overline{H}_{A} = \frac{H_1 + H_2 + \dots + H_{10}}{10} \tag{7}$$

$$\overline{H}_B = \frac{H_{11} + H_{12} + \dots + H_{20}}{10} \tag{8}$$

7.2 The variation coefficient provides the statistical parameter for the dispersion of the calibration values. Validity of results for the variation coefficients is defined in <u>Table 3</u>.

Standard deviation:

$$s_{\rm H_A} = \sqrt{\frac{\sum_{i=1}^{10} (H_i - \overline{H}_A)^2}{n - 1}}$$
(9)
$$\sqrt{\frac{\sum_{i=1}^{20} (H_i - \overline{H}_B)^2}{n - 1}}$$

$$s_{\rm H_B} = \sqrt{\frac{\frac{2}{11}}{n-1}}$$
(10)

Variation coefficient:

$$V_{H_{A}} = \frac{s_{H_{A}}}{\overline{H}_{A}} \cdot 100 \text{ in \%eh STANDARD PREVIEW} (11)$$
(standards.iteh.ai)

$$V_{\rm H_B} = \frac{{}^{3} {}^{\rm H_B}}{\overline{H}_{\rm B}} \cdot 100 \text{ in }\%$$

<u>ISO 16859-3:2015</u>

(12)

https://standards.iteh.ai/catalog/standards/sist/e856abce-3a63-4db1-a25d-

Table 3 — Maximum variation coefficient for reference test block calibrations

Type of impact device	Leeb hardness range of reference test block	Maximum variation coefficient	
	HLa	%	
	<500	2,0	
D, D+15	500 to 700	1,5	
	>700	1,0	
	<700	2,0	
DL, S	700 to 850	1,5	
	>850	1,0	
	<600	2,0	
С, Е	600 to 750	1,5	
	>750	1,0	
	<450	2,0	
G	450 to 600	1,5	
	>600	1,0	
^a HLD for impact devices D, HLD+15 for impact devices D+15, HLDL for impact devices DL, HLS for impact devices S, HLC for impact devices C, HLE for impact devices E, HLG for impact devices G.			

7.3 Estimation of measurement uncertainty for reference test blocks is given in <u>Annex B</u>.