INTERNATIONAL STANDARD

Third edition 2012-08-15

Equipment for fire protection and fire fighting — Fire extinguishing media — Carbon dioxide

Équipement de protection et de lutte contre l'incendie — Agents extincteurs — Dioxyde de carbone

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5923:2012 https://standards.iteh.ai/catalog/standards/sist/f0ec7e88-1a9e-4abb-b6f0-9a77ebaa7a7b/iso-5923-2012

Reference number ISO 5923:2012(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5923:2012 https://standards.iteh.ai/catalog/standards/sist/f0ec7e88-1a9e-4abb-b6f0-9a77ebaa7a7b/iso-5923-2012

COPYRIGHT PROTECTED DOCUMENT

© ISO 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Page

Contents

Forew	ord	iv			
Introd	duction				
1	Scope	1			
2	Normative references	1			
3	Terms and definitions	1			
4	Requirements	1			
5	Sampling	2			
5.1	General	2			
5.2	Sampling equipment	2			
5.3	Procedure	2			
6	Methods of test	3			
6.1	Safety warning	3			
6.2	Purity	3			
6.3	Water content	3			
6.4	Oil content	3			
0.0	rotal sultur compounds content	3			
7	Packaging and labelling	3			
Annex	A (informative) Determination of water content	4			
Annex B (normative) Determination of oil content					
Annex	C (normative) Determination of total sulfur compounds content	9			
Annex	D (informative) General propertiesISO 59232012	. 12			
Annex	E (normative) Precautions for handlingendards/sist/f0ec7e88-1a9e-4abb-b6f0-	. 13			
Annex	F (informative) Compatibility	. 14			
Annex	G (informative) Toxicology	. 15			

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 5923 was prepared by Technical Committee ISO/TC 21, *Equipment for fire protection and fire fighting*, Subcommittee SC 8, *Gaseous media and firefighting systems using gas*.

This third edition cancels and replaces the second edition (ISO 5923:1989), which has been technically revised.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5923:2012 https://standards.iteh.ai/catalog/standards/sist/fDec7e88-1a9e-4abb-b6f0-9a77ebaa7a7b/iso-5923-2012

Introduction

This International Standard is one of a series of other International Standards giving specifications for fire extinguishing media in common use and which are in need of a specification for fire fighting purposes. These specifications are designed to establish that the medium in question has at least a minimum useful fire extinguishing capability and can therefore be reasonably sold for fire extinguishing purposes.

Requirements for media used in particular equipment will form the subject of future International Standards.

Annexes A to C of this International Standard specify methods for determining, respectively, water, oil and total sulfur compounds contents. Annexes D to G provide important information on, and give recommendations relating to, the safety and use of carbon dioxide, and they should be read carefully by all concerned with this medium.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5923:2012 https://standards.iteh.ai/catalog/standards/sist/fDec7e88-1a9e-4abb-b6f0-9a77ebaa7a7b/iso-5923-2012

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5923:2012 https://standards.iteh.ai/catalog/standards/sist/f0ec7e88-1a9e-4abb-b6f0-9a77ebaa7a7b/iso-5923-2012

Equipment for fire protection and fire fighting — Fire extinguishing media — Carbon dioxide

1 Scope

This International Standard specifies requirements for carbon dioxide for use as a fire extinguishing medium.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 385:2005, Laboratory glassware — Burettes

ISO 648:2008, Laboratory glassware — Single-volume pipettes

ISO 2591-1:1988, Test sieving — Part 1: Methods using test sieves of woven wire cloth and perforated metal plate

ISO 3310-1:2000, Test sieves — Technical requirements and testing — Part 1: Test sieves of metal wire cloth **iTeh STANDARD PREVIEW**

3 Terms and definitions (standards.iteh.ai)

For the purposes of this document, the following definition applies.

3.1 https://standards.iteh.ai/catalog/standards/sist/f0ec7e88-1a9e-4abb-b6f0carbon dioxide 9a77ebaa7a7b/iso-5923-2012

C0₂

chemical compound C02 used as a fire extinguishing medium

4 Requirements

Carbon dioxide shall comply with the requirements of Table 1 below, when tested by the appropriate method of test specified in Clause 6.

Table 1 — Requirements	s for carbon	dioxide	properties
------------------------	--------------	---------	------------

Property	Requirements			
Purity, o/o (VI V) min.	99,5			
Water content, o/o (m/m) max.	0,015			
Oil content, ppm by mass, max.	5			
Total sulfur compounds content, expressed as sulfur, ppm by mass, max.	5,0			
NOTE Carbon dioxide obtained by converting dry ice to liquid will not usually comply with these requirements unless it has been properly processed to remove excess water and oil.				

5 Sampling

5.1 General

Samples of carbon dioxide needed to perform all of the tests required by this International Standard shall be taken from the same manufacturing lot, using identical sampling procedures.

NOTE Attention is drawn to the need to design equipment for handling carbon dioxide such that it is either capable of withstanding the pressures involved or is protected from them.

5.2 Sampling equipment

Rigid metal connections or a flexible reinforced nylon hose should be used throughout the sampling equipment and shall be kept as short as possible. All components shall have a design pressure of not less than 137 bar.

5.3 Procedure

5.3.1 General

Two methods of sampling are specified:

- a) direct sampling, in which the sample is passed to an evaporator and then directly to the analytical apparatus;
- b) sampling in cylinders, in which case the sample is transferred in a cylinder to a laboratory.

Other methods may be used provided that they are shown to give equally representative samples on analysis (see Annexes A to C). (standards.iteh.ai)

5.3.2 Direct sampling

<u>ISO 5923:2012</u>

Connect the sampling valve by means of suitable connections (see 5.2) to an evaporating device and then via a T-piece (the free leg of which is connected to the dip-tube of a Drechsel bottle containing 50 mm of mercury covered by a layer of water on the carbon dioxide side) to the analytical apparatus. Thoroughly flush the connections, valves and the evaporating device with carbon dioxide before starting to take the sample.

5.3.3 Sampling in cylinders

Use a cylinder of water capacity 1,4 kg or 2,0 kg and with a valve at each end.

An internal copper dip-tube of diameter at least 5 mm and of length equal to one-third of the length of the cylinder shall be brazed to the base of one valve, which shall be clearly identified. The cylinder shall be coated internally with tin [containing 1 % (m/m) of lead] applied by hot dipping the cylinder after the walls have been descaled.

First clean the sampling cylinder by removing both valves and washing the inside of the cylinder with carbon tetrachloride. Purge with a current of dry filtered air. Wash with methanol and repeat the purging. Degrease the valves using carbon tetrachloride, then refit them. The methanol and carbon tetrachloride used shall comply with the requirements specified in B.2.

Support the cylinder vertically with its dip-tube valve uppermost. Before taking the sample, thoroughly flush the cylinder with a small quantity of liquid carbon dioxide, first through the top valve and then through the bottom valve. Repeat this flushing procedure, and leave the cylinder connected to the liquid carbon dioxide source via its lower valve. Then, with the upper valve closed, open the lower valve to admit liquid carbon dioxide to the cylinder. Partly open the upper (dip-tube) valve and continue filling until carbon dioxide snow is discharged from this valve. Close both valves. Open the top valve several times for brief intervals until only carbon dioxide gas is discharged from it. The free end of the dip-tube inside the cylinder will then be just above the liquid carbon dioxide level in the cylinder.

Samples shall be analysed as soon as reasonably practicable after collection. To withdraw the sample for analysis, support the sampling cylinder vertically with the dip-tube valve at the top. Connect the bottom valve

of the sampling cylinder (liquid carbon dioxide) to an evaporating device and thence via a T-piece, the free leg of which is connected to a tube as described in 5.3.2, to the analytical apparatus. Thoroughly flush the connections, valves and the evaporating device with carbon dioxide before starting the analysis.

When sampling for the determination of water content, heat the connections to above the dew point to prevent condensation during purging.

6 Methods of test

6.1 Safety warning

Attention is drawn to the need to design equipment for handling carbon dioxide such that it is either capable of withstanding the pressures involved or is protected from them.

6.2 Purity

Determine the purity by gas-liquid chromatography, using generally accepted laboratory techniques, or use a volumetric analyser.

The method used shall be capable of determining the purity with an accuracy of at least 0,1 %.

The sample shall not constitute more than 10 % of the original quantity of carbon dioxide contained in the sample container.

6.3 Water content iTeh STANDARD PREVIEW

Determine the water content by the method specified in Annex A or by any other method giving equivalent results.

6.4 Oil content

<u>ISO 5923:2012</u>

https://standards.iteh.ai/catalog/standards/sist/f0ec7e88-1a9e-4abb-b6f0-

Determine the oil content by the method specified in Annex B or by any other method giving equivalent results.

6.5 Total sulfur compounds content

Determine the total sulfur compounds content by the method specified in Annex C or by any other method giving equivalent results.

7 Packaging and labelling

7.1 Carbon dioxide shall be shipped and stored in containers that will not alter the medium or be detrimentally affected by it.

NOTE The containers may need to comply with national regulations.

7.2 Containers shall be marked with the following information:

- a) supplier's name and address;
- b) "carbon dioxide";
- c) package identification number;
- d) the number of this International Standard, i.e. ISO 5923:2012;
- e) recommended storage precautions.

Annex A

(informative)

Determination of water content

A.1 Principle

Gravimetric determination of the water content by passing a sample of the gas over phosphorus pentoxide.

A.2 Apparatus and material

A.2.1 Two absorption tubes, U-shape, the length of the limbs being 100 mm and the diameter of the tubes being 12 mm, fitted with side arms and ground-glass drilled stoppers.

The tubes shall be filled with the desiccant (A.2.5), which shall be held in position by small pads of cotton wool.

A.2.2 Flow meter (if desired), float type, suitable for measuring a carbon dioxide flow of 200 ml/min to 2 000 ml/min.

A.2.3 Gas meter, calibrated for 11 or 2,51 per revolution.

- (standards.iteh.ai)
- **A.2.4** Test sieves, of aperture sizes 425 μm and 600 μm, complying with the requirements of ISO 3310-1:2000.

ISO 5923:2012

A.2.5 Desiccant https://standards.iteh.ai/catalog/standards/sist/f0ec7e88-1a9e-4abb-b6f0-

9a77ebaa7a7b/iso-5923-2012

Sift powdered glass or clean, dry, washed sand and retain the portion that passes through a test sieve of aperture size $600 \ \mu m$ but is retained on a test sieve of aperture size $425 \ \mu m$.

In general, follow the applicable recommendations and requirements of ISO 2591-1:1988.

Quickly transfer a volume of fresh phosphorus pentoxide to a stoppered container (a large weighing bottle or small stoppered jar is suitable) and add about half as much by volume of the prepared powdered glass or sand. Vigorously shake the container to mix the components and fill the U-tubes (A.2.1) as quickly as possible with the mixture.

If it is prepared in this way, it should be easy to fill the tube with the desiccant. If it is not easy, it is probable that the phosphorus pentoxide was moist before the addition of the powdered glass or sand.

Prepare the desiccant in small quantities, as required.

A.3 Sampling

Take the sample in a cylinder by the method described in 5.3.3. About 120 g of carbon dioxide is required for each determination.

A.4 Determination

After the evaporating device, connect the exit side of the T-piece to the absorption tubes (A.2.1), the flow meter (A.2.2) and the gas meter (A.2.3) in series, in that order.

Carefully open the regulating valve and absorption tube taps and allow the gas to flow at a flow rate of about 500 ml/min for 10 min, until the carbon dioxide displaces the air in the absorption tubes. Close all taps,

disconnect the absorption tubes and wipe the tube surfaces with a dry, soft cloth. Place the absorption tubes in the balance case, leave for 20 min, then weigh them to the nearest 0,5 mg.

Reconnect the absorption tubes. Note the reading of the gas meter, then allow the gas to pass at a steady rate of 500 ml/min to 1 000 ml/min for 1 h.

Close the taps and reducing valve. Note the gas meter reading. Place the absorption tubes in the balance case, leave for 20 min, then weigh them to the nearest 0,5 mg.

A.5 Expression of results

The water content, expressed as a percentage by mass, is given by the formula:

$$\frac{54,29\left(m_2-m_1\right)}{V}$$

where

 m_1 is the initial mass, in grams, of the absorption tubes;

 m_2 is the final mass, in grams, of the absorption tubes;

V is the volume, in litres, at 20 °C and 760 mmHg¹, of gas passed, read from the gas meter.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5923:2012 https://standards.iteh.ai/catalog/standards/sist/f0ec7e88-1a9e-4abb-b6f0-9a77ebaa7a7b/iso-5923-2012

^{1) 1} mmHg = 101,3 kPa.