# INTERNATIONAL STANDARD

First edition 2011-08-15

# Vacuum technology — Vacuum gauges — Evaluation of the uncertainties of results of calibrations by direct comparison with a reference gauge

Technique du vide — Manomètres à vide — Évaluation de l'incertitude des résultats des étalonnages par comparaison directe avec un iTeh STmanomètre de référence EVIEW

# (standards.iteh.ai)

ISO 27893:2011 https://standards.iteh.ai/catalog/standards/sist/76460e7d-01e2-4e77-b344-1eb20cd70cf4/iso-27893-2011



Reference number ISO 27893:2011(E)

# iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 27893:2011</u> https://standards.iteh.ai/catalog/standards/sist/76460e7d-01e2-4e77-b344-1eb20cd70cf4/iso-27893-2011



### COPYRIGHT PROTECTED DOCUMENT

#### © ISO 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

## Contents

Page

| Forev                                | word                                                                                                                                                                                                                                                                                                             | iv               |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1                                    | Scope                                                                                                                                                                                                                                                                                                            | 1                |
| 2                                    | Normative references                                                                                                                                                                                                                                                                                             | 1                |
| 3                                    | Terms and definitions                                                                                                                                                                                                                                                                                            | 2                |
| 4                                    | Symbols and abbreviated terms                                                                                                                                                                                                                                                                                    | 3                |
| 5<br>5.1                             | Basic concept and model<br>General                                                                                                                                                                                                                                                                               |                  |
| 5.2<br>5.3<br>5.4                    | Sum model<br>Quotient model<br>Combination of the two models                                                                                                                                                                                                                                                     | 4                |
| 6<br>6.1<br>6.2<br>6.3<br>6.4<br>6.5 | Calculation of uncertainty in the sum model<br>Total uncertainty — Sum model<br>Uncertainty contributions due to reference standard<br>Uncertainty contributions due to unit under calibration<br>Uncertainty contributions due to calibration method or calibration conditions<br>Coverage factor               | 5<br>6<br>7<br>8 |
| 7<br>7.1<br>7.2<br>7.3<br>7.4<br>7.5 | Calculation of uncertainty in the quotient model<br>Total uncertainty — Quotient model<br>Uncertainty contributions due to reference standard<br>Uncertainty contributions due to the unit under calibration<br>Uncertainty contributions due to calibration method or calibration conditions<br>Coverage factor | 9<br>10          |
| 8                                    | Combination of the sum and quotient model for error of reading                                                                                                                                                                                                                                                   | 13               |
| 9<br>9.1<br>9.2                      | Reporting uncertainties<br>Uncertainty budget<br>Calibration certificate                                                                                                                                                                                                                                         | 13               |
| Biblic                               | ography                                                                                                                                                                                                                                                                                                          | 15               |

## Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 27893 was prepared by Technical Committee ISO/TC 112, Vacuum technology.

This first edition of ISO 27893 cancels and replaces the first edition of ISO/TS 27893:2009, which has been technically revised.

# (standards.iteh.ai)

<u>ISO 27893:2011</u> https://standards.iteh.ai/catalog/standards/sist/76460e7d-01e2-4e77-b344-1eb20cd70cf4/iso-27893-2011

# Vacuum technology — Vacuum gauges — Evaluation of the uncertainties of results of calibrations by direct comparison with a reference gauge

#### 1 Scope

This International Standard gives guidelines for the determination and reporting of measurement uncertainties arising during vacuum gauge calibration by direct comparison with a reference gauge carried out in accordance with ISO/TS 3567.

This International Standard describes methods for uniform reporting of uncertainties in vacuum gauge certificates. Uncertainties reported in accordance with the guidelines given in this International Standard are transferable in the sense that the uncertainty evaluated for one result can be used as a component in the uncertainty evaluation of another measurement or calibration in which the first result is used.

This International Standard defines two measurement models that are sufficient to cover most practical cases. However, it is possible that the models given cannot be applied to newly developed vacuum gauges.

The final uncertainty to be reported in a certificate is evaluated from the uncertainties of the input quantities and influence quantities. The principal quantities that can affect the result of a vacuum calibration are described; however, a complete list of the possible quantities that can have an influence on the final result lies outside the scope of this International Standard and draws/sist/76460e7d-01e2-4e77-b344-

#### 1eb20cd70cf4/iso-27893-2011

NOTE It is envisaged that future Technical Specifications will address the calibration of specific types of vacuum gauges.

#### 2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/TS 3567, Vacuum gauges — Calibration by direct comparison with a reference gauge

ISO/IEC Guide 98-3, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)

ISO/IEC Guide 99:2007, International vocabulary of metrology — Basic and general concepts and associated terms (VIM)

#### 3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/TS 3567, ISO/IEC Guide 98-3, ISO/IEC Guide 99 and the following apply.

#### 3.1

#### corrected reading

value resulting after the reading of the gauge has been corrected for systematic errors

EXAMPLE For the results given in the calibration certificate of the reference standard.

#### 3.2

#### long-term instability

possible change of calibrated value after long periods of time

EXAMPLE Change resulting from transportation of the device.

NOTE Long-term instability is different from reproducibility as defined in ISO/IEC Guide 99:2007, 3.7.

#### 3.3

#### model

 $\langle \text{uncertainty of measurement} \rangle$  mathematical model set out in ISO/IEC Guide 98-3

#### 3.4

#### offset

(measuring instruments) zero eror eh STANDARD PREVIEW datum measurement error where the specified measured quantity value is zero (standards.iteh.ai)

NOTE Adapted from ISO/IEC Guide 99:2007, 4.28.

EXAMPLE The reading when there is no pressure (absolute or differential) or a pressure far below the resolution limit applied to a vacuum gauge.

#### 3.5

#### deviation of offset

Possible difference of an **offset** (3.4) value between the time of the measurement of the **offset** (3.4) and the time when a pressure reading is taken

#### 3.6

#### reference standard

#### reference gauge

standard, generally having the highest metrological quality available at a given location or in a given organization, from which measurements made there are derived

NOTE Adapted from ISO/IEC Guide 99:2007, 6.6.

EXAMPLE The gauge or standard that gives traceability to the SI unit in the calibration apparatus in accordance with ISO/TS 3567.

#### 3.7

#### calibration pressure

(vacuum gauges) pressure evaluated from the **corrected reading** (3.1) of the **reference standard** (3.6) and all necessary corrections at the gauge port of the unit under calibration

EXAMPLE Necessary corrections might be for known differences between gauge ports.

## 4 Symbols and abbreviated terms

| Symbol or<br>abbreviated term | Designation                                                                                                  | Unit              |
|-------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------|
| UUC                           | unit under calibration (vacuum gauge)                                                                        | —                 |
| е                             | error of reading                                                                                             | in relative units |
| k                             | coverage factor to expand standard uncertainty, u                                                            | 1                 |
| <i>p</i> uuc                  | pressure indication of a UUC corrected for known deviations                                                  | Pa <sup>1)</sup>  |
| $p_{ind,UUC}$                 | pressure indication of a UUC not corrected for any deviation                                                 | Ра                |
| $p_{std}$                     | pressure indication of reference gauge (reference standard) corrected for known deviations                   | Pa                |
| $p_{ind,std}$                 | pressure indication of reference gauge (reference standard) not corrected for any deviation                  | Pa                |
| <sup>r</sup> UUC              | quantity determined by a calibration in the quotient model                                                   | any unit          |
| <sup>r</sup> std              | the quantity that was determined for the reference standard                                                  | any unit          |
| S                             | sensitivity of the output of a vacuum gauge                                                                  | any unit          |
| u                             | standard uncertainty<br>(standards.iteh.ai)                                                                  | any unit          |
| U                             | expanded uncertainty                                                                                         | any unit          |
| x <sub>UUC</sub>              | indication of a UUC ISO 27893:2011<br>ps://standards.iteh.ai/catalog/standards/sist/76460e7d-01e2-4e77-b344- | any unit          |
| x <sub>std</sub>              | indication of a reference gauge 7893-2011                                                                    | any unit          |
| $\mathbf{x}_i$                | (often unknown) input quantities and corrections of gauge                                                    | any unit          |
| $X_i$                         | (often unknown) input quantities and corrections of calibration method or condition                          | any unit          |
| $\Delta p$                    | error of reading in absolute units                                                                           | Ра                |
| $\delta p_i$                  | deviations in the pressure unit (often unknown)                                                              | Ра                |
| $\delta x_i$                  | (often unknown) deviations in the x                                                                          | any unit          |
| $\sigma_{ m eff}$             | effective accommodation coefficient of a spinning rotor gauge                                                | 1                 |

#### 5 Basic concept and model

#### 5.1 General

In a vacuum gauge calibration carried out in accordance with ISO/TS 3567, the corrected reading of a reference gauge gives the value of the quantity that is traceable to the SI. All vacuum gauges shall be calibrated in terms of pressure. This means that the user of the vacuum gauge calibrated in accordance with ISO/TS 3567 and this International Standard obtains a clear assignment of the output quantity of the gauge to the SI unit of pressure, the pascal.

<sup>1) 1</sup> Pa = 0,01 mbar.

The value of pressure obtained from the corrected reading of the reference standard output can be used to determine the pressure at the entrance port of the unit under calibration (UUC). This is referred to as calibration pressure value. Often the corrected reading of the reference standard is identical to the calibration pressure value and valid for all gauge ports.

The calibration pressure value can be used to determine an error of the reading,  $\Delta p$ , of the unit under calibration. In this case, a sum model gives an adequate description of the measurement.

The calibration pressure value can also be used to determine a correction factor, a sensitivity coefficient, an effective accommodation coefficient or a gauge constant, in which case a quotient model gives an adequate description of the measurement.

In both models it can be assumed that all the input quantities are uncorrelated.

#### 5.2 Sum model

In the sum model, the difference between the reading of the UUC,  $p_{ind}$ , and the "true" calibration pressure traceable to the SI units is taken as the measurand,  $\Delta p$ . The calibration pressure is given by the reference standard pressure value,  $p_{std}$ , and possibly by a correction term,  $\delta p_m$ , due to the calibration method considering known effects like height correction, thermal transpiration, and pressure non-uniformity. The general sum model thus becomes

$$\Delta p = p_{\text{UUC}} - \left( p_{\text{std}} + \delta p_{\text{m}} \right) \tag{1}$$

The first term refers to the UUC, the second to the reference standard, and the third to the calibration method. The sum of the last two terms gives the calibration pressure value. All quantities shall be expressed in the SI unit of pressure, the pascal. (standards.iteh.ai)

Each of these terms is again expressed by another model equation, which makes all necessary corrections due to offsets, temperature corrections, deviation of indication from the SI value in accordance with the calibration certificate, etc. https://standards.iteh.ai/catalog/standards/sist/76460e7d-01e2-4e77-b344-1eb20cd70cf4/iso-27893-2011

#### 5.3 Quotient model

In the quotient model, the ratio of the reading of the UUC,  $x_{UUC}$ , and the standard pressure value,  $p_{std}$ , is taken as the measurand,  $r_{UUC}$ . The general quotient model thus becomes

$$r_{\text{UUC}} = \frac{x_{\text{UUC}}}{p_{\text{std}}} \prod_{i} X_{i}$$
(2)

The numerator refers to the UUC, the denominator to the reference standard, and the product to the calibration method and conditions. The latter can also be defined by the vacuum gauges under study, e.g. the emission current in a hot cathode ionization gauge. It is possible to express  $x_{ind}$  in any reasonable unit, e.g. that of pressure, voltage or current. The  $X_i$  can be expressed in any meaningful physical unit or can be without dimension.

Each of these factors is expressed by another model equation, which makes all necessary corrections due to offsets, temperature corrections, deviation of indication in accordance with calibration certificate, etc.

Examples of  $r_{UUC}$  are

- a)  $f_c^{-1}$  the reciprocal of a dimensionless correction factor, where  $x_{UUC} = p_{UUC}$  and  $X_i = 1$ ;
- b) S a sensitivity of the analogue output,  $V_{UUC}$ , of a capacitance diaphragm gauge, where  $x_{UUC} = V_{UUC}$ ;
- c) S a sensitivity of the analogue output,  $V_{UUC}$ , of a thermal conductivity gauge, where  $x_{UUC} = V_{UUC}$ ;

- d)  $\sigma_{\text{eff}}$  the effective accommodation coefficient of a spinning rotor gauge, where  $x_{\text{UUC}} = p_{\text{UUC}}$ , when  $\sigma_{\text{eff}} = 1$  was entered into the controller;
- e) S a sensitivity of a Bayard-Alpert gauge with a hot cathode, where  $x_{UUC} = I_{UUC}$  is the positive ion current of the collector and  $X_1 = 1/I_e$ , where  $I_e$  is the emission current.

#### 5.4 Combination of the two models

It is possible to evaluate some of the input quantities in each model by either of the two models. First, for example,  $p_{std}$  as well as its uncertainty can be evaluated by the quotient model, thus

$$p_{\rm std} = \frac{x_{\rm std}}{r_{\rm std}} \tag{3}$$

The result can then be used in Equation (1). This is unavoidable if  $r_{std}$  is given in the certificate applying Equation (2) (e.g. the sensitivity of an analogue output), where  $r_{UUC}$  is replaced by  $r_{std}$ .

It is, however, not recommended to combine the sum and quotient model in one equation. This task should be left to experts, since complicated sensitivity coefficients might appear that are not covered in this International Standard for reasons of clarity. The relative error of reading, *e*, however, is a common case, where an easy to handle combination of the two methods is possible.

The error of reading, e, can be expressed mathematically as

$$e = \frac{p_{\text{UUC}} - (p_{\text{std}} + \delta p_m)}{(p_{\text{std}} + \delta p_m)} = \frac{p_{\text{UUC}}}{p_{\text{std}} + \delta p_m} \text{DARD PREVIEW}$$
(4a)

or, if  $\delta p_{\rm m} = 0$ 

 $e = \frac{p_{\text{UUC}} - p_{\text{std}}}{p_{\text{std}}} = \frac{p_{\text{UUC}}}{p_{\text{std}}} - 1$   $\frac{ISO 27893:2011}{P_{\text{std}}}$  (4b)

See Clause 4 for the designations of  $p_{UUC}$ ,  $p_{std}$ , and  $\delta p_m$ . The uncertainty of *e* is described in Clause 8.

#### 6 Calculation of uncertainty in the sum model

#### 6.1 Total uncertainty — Sum model

The total uncertainty in the sum model,  $u(\Delta p)$ , is given by

$$u(\Delta p) = \sqrt{u(p_{\text{UUC}})^2 + u(p_{\text{std}})^2 + u(\delta p_{\text{m}})^2}$$
(5)

where

 $u(p_{UUC})$  is the standard uncertainty of the corrected indication of vacuum gauge UUC;

 $u(p_{std})$  is the standard uncertainty of the value of standard pressure;

 $u(\delta p_m)$  is the standard uncertainty of the deviations due to the calibration method.

#### 6.2 Uncertainty contributions due to reference standard

The measurement of the standard pressure,  $p_{std}$ , is given by

$$p_{\text{std}} = p_{\text{ind,std}} - p_{\text{offs,std}} + \delta p_{\text{drft,std}} + \delta p_{\text{cal,std}} + \delta p_{t,\text{std}} + \delta p_{T,\text{std}} + \delta p_{\text{els,std}}$$
(6)

where

| $p_{ind,std}$          | is the indication of the reference standard;                                                                            |
|------------------------|-------------------------------------------------------------------------------------------------------------------------|
| $p_{\rm offs,std}$     | is the offset (zero deviation) of the reference standard;                                                               |
| $^{\delta p}$ drft,std | is the deviation of offset due to drift (in most cases, $\delta p_{drft,std} = 0$ );                                    |
| $^{\delta p}$ cal,std  | is the correction in accordance with the calibration certificate;                                                       |
| $\delta p_{t,std}$     | is the deviation due to long-term instability (in most cases, $\delta p_{t,std} = 0$ );                                 |
| $\delta p_{T, std}$    | is the deviation due to temperature at the calibration laboratory;                                                      |
| $\delta p_{els,std}$   | is the deviation due to other influences, e.g. inclination of device (in most cases, $\delta p_{\text{els,std}} = 0$ ). |

All guantities in Equation (6) refer to the reference standard gauge.

NOTE If the offset is deducted or adjusted to zero in the device itself,  $p_{offs.std} = 0$ .

The standard uncertainty of the standard pressure,  $u(p_{std})$ , is then given by

$$(p_{\text{std}}) = \sqrt{u(p_{\text{ind},\text{std}})^2 + u(p_{\text{offs},\text{std}})^2 + u(\delta p_{\text{drft},\text{std}})^2 + u(\delta p_{\text{cal},\text{std}})^2 + u(\delta p_{t,\text{std}})^2 + u(\delta p_{\text{els},\text{std}})^2} (7)$$

where

u

https://standards.iteh.ai/catalog/standards/sist/76460e7d-01e2-4e77-b344-1eb20cd70cf4/iso-27893-2011

- $u(p_{\text{ind,std}})$  is the uncertainty originating from the dispersion of measurement values, including dispersion due to digitizing, resolution scatter, etc.;
- $u(p_{offs,std})$  is the uncertainty of the offset values at measurement of the offset [without reproducibility of the offset covered by  $u(\delta p_{drft,std})$ ];
- $u(\delta p_{drft,std})$  is the uncertainty of the offset values at time of calibration due to offset drift or other systematic dependencies, e.g. due to the frequency dependence of spinning rotor gauges;
- $u(\delta p_{cal.std})$  is the uncertainty of the standard in accordance with the calibration certificate;
- $u(\delta p_{t,std})$  is the uncertainty component allowing for the long-term instability;
- $u(\delta p_{T,std})$  is the uncertainty component due to the temperature influence under the conditions of the calibration laboratory;
- $u(\delta p_{\text{els,std}})$  is the uncertainty due to the specific conditions at the calibration laboratory, e.g. different mounting position of built-in devices.

For a  $p_{\text{ind,std}}$  that has not been obtained from repeated observations, estimate  $u(p_{\text{ind,std}})$  from scientific judgement based on all of the available information on the possible variability (including uncertainty component due to digitizing, repeatability, etc.).

For a temperature at calibration different from that shown in the calibration certificate,  $u(\delta p_{T,std})$  should be included, if significant.

(8)

#### 6.3 Uncertainty contributions due to unit under calibration

The measurement of the pressure of the UUC,  $p_{UUC}$ , is given by

$$p_{\text{UUC}} = p_{\text{ind},\text{UUC}} - p_{\text{offs},\text{UUC}} + \delta p_{\text{drft},\text{UUC}} + \delta p_{\text{els},\text{UUC}}$$

where

| $p_{ind,UUC}$             | is the indication of the UUC;                                                                                       |
|---------------------------|---------------------------------------------------------------------------------------------------------------------|
| $p_{\rm offs,UUC}$        | is the offset (zero point deviation) of the UUC;                                                                    |
| $\delta p_{\rm drft,UUC}$ | is the deviation of offset drift (in most cases, $\delta p_{drft,UUC} = 0$ );                                       |
| $\delta p_{els,UUC}$      | represents the deviations due to other influences, e.g. inclination (in most cases, $\delta p_{\rm res,UUC} = 0$ ). |

The standard uncertainty of the measurement of the pressure with UUC,  $u(p_{UUC})$ , is then given by

$$u(p_{\text{UUC}}) = \sqrt{u(p_{\text{ind},\text{UUC}})^2 + u(p_{\text{offs},\text{UUC}})^2 + u(\delta p_{\text{drft},\text{UUC}})^2 + u(\delta p_{\text{els},\text{UUC}})^2}$$
(9)

where

## iTeh STANDARD PREVIEW

- is the uncertainty originating from the dispersion of measurement values of UUC, including  $u(p_{\text{ind},\text{UUC}})$ dispersion due to digitizing, resolution scatter, etc.;
- is the uncertainty of the offset<sub>7</sub> values of the UUC at measurement of the offset (without  $u(p_{offs,UUC})$ reproducibility of the offset covered by the following quantity);44

1eb20cd70cf4/iso-27893-201

- $u(\delta p_{drft,UUC})$  is the uncertainty of the offset values of the UUC due to offset drift or other systematic dependencies, e.g. due to speed dependence in the case of spinning rotor gauges;
- $u(\delta p_{els,UUC})$  represents the other uncertainty components, which can also stem from the calibration item, e.g. temperature influences.

For a  $p_{ind,UUC}$  that has not been obtained from repeated observations, estimate  $u(p_{ind,UUC})$  from scientific judgement based on all of the available information on the possible variability (including uncertainty component due to digitizing, repeatability, etc.).

If the above-mentioned dependencies or values are not known, or cannot be estimated by the calibration laboratory, or manufacturer's specifications are not available, carry out at least two repeat measurements on different days. The uncertainty component of the values of the calibration item,  $u(p_{ind,UUC})$ , is then determined from

$$u(p_{ind,UUC}) = u(p_{rep,UUC})$$

(10)

where  $u(p_{rep,UUC})$  is the repeatability (standard deviation) of the (at least) three measurement values determined for one pressure point or over a larger range.