

StandardSpecification for Carbon and Alloy Steel Nuts (Metric)¹

This standard is issued under the fixed designation A563M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope*

1.1 This specification covers chemical and mechanical requirements for eight property classes of hex and hex-flange carbon and alloy steel nuts for general structural and mechanical uses on bolts, studs, and other externally threaded parts.

Note 1—Throughout this specification, the term class means property class.

Note 2—Requirements for the four classes 5, 9, 10, and 12 are essentially identical with requirements given for these classes in ISO 898/II. Requirements for Classes 8S and 10S are essentially identical with requirements in an ISO 4775 Hexagon Nuts for High-Strength Structural Bolting with Large Width Across Flats, Product Grade B, Property Classes 8 and 10. Classes 8S3 and 10S3 are not recognized in ISO standards.

1.2 Classes 8S3 and 10S3 nuts have atmospheric corrosion resistance and weathering characteristics comparable to those of the steels covered in Specification A588/A588M. The atmospheric corrosion resistance of these steels is substantially better than that of carbon steel with or without copper addition (see 5.2). When properly exposed to the atmosphere, these steels can be used bare (uncoated) for many applications.

1.3 The nut size range for which each class is applicable is given in the table on mechanical requirements.

1.4 Appendix X1 gives guidance to assist designers and purchasers in the selection of a suitable class.

1.5 Appendix X2 gives data on the properties of slotted hex nuts and hex jam nuts.

Note 3—This specification is the metric companion of Specification A563.

1.6 Terms used in this specification are defined in Terminology F1789 unless otherwise defined herein.

2. Referenced Documents

- 2.1 ASTM Standards:²
- A153/A153M Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware
- A325M Specification for Structural Bolts, Steel, Heat Treated 830 MPa Minimum Tensile Strength (Metric)
- A394 Specification for Steel Transmission Tower Bolts, Zinc-Coated and Bare
- A490M Specification for High-Strength Steel Bolts, Classes 10.9 and 10.9.3, for Structural Steel Joints (Metric)
- A588/A588M Specification for High-Strength Low-Alloy Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, with Atmospheric Corrosion Resistance

A751 Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products

- B695 Specification for Coatings of Zinc Mechanically Deposited on Iron and Steel
- D3951 Practice for Commercial Packaging

F568M Specification for Carbon and Alloy Steel Externally Threaded Metric Fasteners (Metric) (Withdrawn 2012)³

F606M Test Methods for Determining the Mechanical Prop-

- erties of Externally and Internally Threaded Fasteners, Washers, and Rivets (Metric)
- F812/F812M Specification for Surface Discontinuities of Nuts, Inch and Metric Series
- F1789 Terminology for F16 Mechanical Fasteners

G101 Guide for Estimating the Atmospheric Corrosion Resistance of Low-Alloy Steels

2.2 ANSI Standards:⁴

- B 1.13M Metric Screw Threads—M Profile
- B 18.2.4.1M Metric Hex Nuts, Style 1

¹This specification is under the jurisdiction of ASTM Committee F16 on Fasteners and is the direct responsibility of Subcommittee F16.02 on Steel Bolts, Nuts, Rivets and Washers.

Current edition approved Dec. 1, 2007. Published January 2008. Originally approved in 1980. Last previous edition approved in 2006 as A563M - 06. DOI: 10.1520/A0563M-07.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ The last approved version of this historical standard is referenced on www.astm.org.

⁴ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.

B 18.2.4.2M Metric Hex Nuts, Style 2

B 18.2.4.3M Metric Slotted Hex Nuts

B 18.2.4.4M Metric Hex Flange Nuts

B 18.2.4.5M Metric Hex Jam Nuts B 18.2.4.6M Metric Heavy Hex Nuts

2.3 ISO Standards:⁴

2.5 ISO Stanaaras:

ISO 898/II Mechanical Properties of Fasteners, Part II, Nuts With Specified Proof Loads

ISO 4775 Hexagon Nuts for High-Strength Structural Bolting with Large Width Across Flats—Product Grade B—Property Classes 8 and 10

3. Ordering Information

3.1 Orders for nuts under this specification shall include the following:

3.1.1 Quantity (number of nuts);

3.1.2 Nominal diameter and thread pitch;

3.1.3 Dimensional style of nut (for example, hex, heavy hex, or hex flange);

3.1.4 Property class of nut;

3.1.5 *Zinc Coating*—Specify the zinc coating process required, hot-dip, mechanically deposited, or no preference (see 4.7);

3.1.6 Other Finishes—Specify other protective finish if required;

3.1.7 ASTM designation and year of issue; and

3.1.8 Supplementary or special requirements.

3.2 The strength requirements for any class of nut may be satisfied by substituting a nut of a higher class provided that the nut width across flats is the same. With the written approval of the purchaser, the supplier may substitute as follows: Class 12 nuts for Classes 10, 9, and 5; Class 10 nuts for Classes 9 and 5; Class 9 nuts for Class 5; Class 10S for Class 8S; Class 8S3 for Class 8S; and Class 10S3 for Classes 10S, 8S, and 8S3.

Note 4—Purchasers are cautioned that different classes of nuts have different nut thickness (see 7.2 through 7.5). Dimensional suitability of the nut for the intended application should be considered before approving substitution of a higher class.

Note 5—Examples of ordering descriptions are: (1) 10 000 M12 \times 1.75 hex nuts, Class 9, ASTM A563M–XX; (2) 2500 M24 \times 3 heavy hex nuts, Class 10S, hot-dip zinc-coated, ASTM A563M–XX; and (3) 5000 M10 \times 1.5 hex flange nuts, Class 10, ASTM A563M–XX.

4. Materials and Manufacture

4.1 Steel for nuts shall be made by the open-hearth, basic-oxygen, or electric-furnace process.

4.2 Nuts may be made cold or hot by forming, pressing, or punching, or may be machined from bar stock.

4.3 Classes 10, 12, 10S, and 10S3 nuts shall be heat treated by quenching in a liquid medium from a temperature above the transformation temperature and tempering at a temperature of at least 425°C.

4.4 Classes 8S and 8S3 nuts made of any steel permitted for these classes may be heat treated by quenching in a liquid medium from a temperature above the transformation temperature and tempering at a temperature of at least 425°C.

4.5 Class 8S nuts made of steel having a carbon content not exceeding 0.20 %, phosphorus not exceeding 0.04 %, and

sulfur not exceeding 0.05 % by heat analysis may be heat treated by quenching in a liquid medium from a temperature above the transformation temperature and need not be tempered. When this heat treatment is used, particular attention shall be paid to the requirements in 6.1.

4.6 Threads shall be formed, tapped, or machined.

4.7 Zinc Coatings, Hot-Dip and Mechanically Deposited:

4.7.1 When zinc-coated fasteners are required, the purchaser shall specify the zinc coating process, for example, hot-dip, mechanically deposited, or no preference.

4.7.2 When hot-dip is specified, the fasteners shall be zinc-coated by the hot-dip process in accordance with the requirements of Class C of Specification A153/A153M.

4.7.3 When mechanically deposited is specified, the fasteners shall be zinc-coated by the mechanical-deposition process in accordance with the requirements of Class 55 of Specification B695.

4.7.4 When no preference is specified, the supplier may furnish either a hot-dip zinc coating in accordance with Specification A153/A153M, Class C, or a mechanically deposited zinc coating in accordance with Specification B695, Class 55. All components of mating fasteners (bolts, nuts, and washers) shall be coated by the same zinc coating process and the supplier's option is limited to one process per item with no mixed processes in a lot.

4.7.5 Hot-dip zinc coated nuts shall be tapped after zinc coating in accordance with the thread limits in 7.8.

4.7.6 Mechanically deposited zinc-coated nuts for assembly with mechanically deposited zinc-coated bolts shall be tapped oversize in accordance with the thread limits in 7.8 prior to zinc coating and need not be retapped afterwards.

NOTE 6—It is the intent of 4.7 and 4.8 together with the requirements specified in 7.8 that galvanized bolts and nuts will assemble freely, regardless of source of supply.

4.8 Hot-dip and mechanically deposited zinc-coated Class 10S nuts shall be provided with an additional lubricant that shall be clean and dry to the touch.

5. Chemical Composition

5.1 Classes 5, 9, 8S, 10, 10S, and 12 shall conform to the chemical composition specified in Table 1.

5.2 Classes 8S3 and 10S3 shall conform to the chemical composition specified in Table 2. See Guide G101 for methods of estimating corrosion resistance of low alloy steels.

5.3 Resulfurized or rephosphorized steel, or both, are not subject to rejection based on product analysis for sulfur or phosphorus unless misapplication is clearly indicated.

5.4 Application of heats of steel to which bismuth, selenium, tellurium, or lead has been intentionally added shall not be permitted for Classes 10, 12, 10S, and 10S3.

5.5 Chemical analyses shall be performed in accordance with Test Methods, Practices, and Terminology A751.

TABLE	1	Chemical	Requirements
-------	---	----------	--------------

Property Class of Nut	Composition, %				
	Analysis	Carbon	Manga- nese, min	Phos- phorus, max	Sulfur, max
5, 9, 8S	heat product	0.55 max 0.58 max		0.04 0.048	0.15 ^A
10 ^{<i>B</i>} , 10S	heat product	0.55 max 0.58 max	0.30 0.27	0.04 0.048	0.05 0.058
12 ⁸ 8S3, 10S3	heat product	0.20–0.55 0.18–0.58	0.60 0.57 See Table 2	0.04 0.048	0.05 0.058

^A For Classes 5 and 9, a sulfur content of 0.23 % max. is acceptable with the purchasers approval.

^B For Classes 10 and 12, a sulfur content of 0.15 % max. is acceptable provided the manganese is 1.35 % min.

6. Mechanical Properties

6.1 The hardness of nuts of each class shall not exceed the maximum hardness specified for the class in Table 3. This shall be the only hardness requirement for nuts that are proof load tested.

6.2 Unless proof load testing is specified in the inquiry and purchase order, nuts of all classes in nominal thread diameters M4 and smaller, and nuts of all classes with proof loads greater than 530 kN, as specified in Table 4, may be furnished on the basis of having a hardness not less than the minimum hardness specified in Table 3.

6.3 Nuts of all classes, except those covered in 6.2, shall withstand the proof load stress specified for the diameter and class of nut in Table 3.

NOTE 7—The proof load of a nut is the axially applied load the nut must withstand without thread stripping or rupture. Proof loads (Table 4) are computed by multiplying proof load stress (Table 3) by the nut thread stress area.

7. Dimensions

7.1 Unless otherwise specified, nuts shall be furnished plain (non-coated nor plated).

7.2 Class 5 nuts in nominal thread diameters M36 and smaller shall conform to dimensions for hex nuts, Style 1, given in ANSI B 18.2.4.1M. Class 5 nuts in nominal thread diameters M42 and larger shall conform to dimensions for heavy hex nuts given in ANSI B 18.2.4.6M.

7.3 Class 9 nuts in nominal thread diameters M20 and smaller shall conform to dimensions for hex nuts, Style 2, given in ANSI B 18.2.4.2M or for hex flange nuts given in ANSI B 18.2.4.4M. When the dimensional style of nut is not designated by the purchaser, hex nuts, Style 2, in conformance with ANSI B 18.2.4.2M shall be furnished. Class 9 nuts in nominal thread diameters M24 to M36 inclusive shall conform to dimensions for hex nuts, Style 2, given in ANSI B 18.2.4.2M. Class 9 nuts in nominal thread diameters M42 to M36 inclusive shall conform to dimensions for hex nuts, Style 2, given in ANSI B 18.2.4.2M. Class 9 nuts in nominal thread diameters M42 and larger shall conform to dimensions for heavy hex nuts given in ANSI B 18.2.4.6M.

7.4 Class 10 nuts in nominal thread diameters M20 and smaller shall conform to dimensions for hex nuts, Style 1, given in ANSI B 18.2.4.1M or for hex flange nuts given in ANSI B 18.2.4.4M. When the dimensional style of nut is not designated by the purchaser, hex nuts, Style 1, in conformance with ANSI B 18.2.4.1M shall be furnished. Class 10 nuts in nominal thread diameters from M24 to M36 inclusive shall conform to dimensions for hex nuts, Style 1 given in ANSI B 18.2.4.1M.

7.5 Class 12 nuts in nominal thread diameters M20 and smaller shall conform to dimensions for hex nuts, Style 2, given in ANSI B 18.2.4.2M or for hex flange nuts given in ANSI B 18.2.4.4M. When the dimensional style of the nut is not designated by the purchaser, hex nuts, Style 2, in conformance with ANSI B 18.2.4.2M shall be furnished. Class 12 nuts in nominal thread diameters M24 to M36 inclusive shall conform to dimensions for hex nuts, Style 2, given in ANSI B 18.2.4.2M. Class 12 nuts in nominal thread diameters M42 and larger shall conform to dimensions for heavy hex nuts given in ANSI B 18.2.4.6M.

7.6 Classes 8S, 8S3, 10S, and 10S3 in nominal thread diameters M12 to M36 inclusive shall conform to dimensions for heavy hex nuts given in ANSI B 18.2.4.6M.

7.7 Unless otherwise specified, threads in nuts shall be the metric coarse thread series as specified in ANSI B 1.13M, and shall have grade 6H tolerances.

7.8 This requirement applies to nuts hot-dip and mechanically zinc-coated that are to be used on bolts, screws, or studs that have metric coarse threads with Grade 6G tolerances before zinc-coating and then are hot-dip or mechanically zinc-coated, except as noted in 7.9, in accordance with 4.7.2 and 4.7.3. Such nuts shall be tapped oversize to have internal threads with maximum and minimum limits that exceed the maximum and minimum limits specified for metric coarse internal threads with Grade 6H tolerances by the following diametral allowances:

	Diametral Allowance,
Nut Diameter	μm
M5	156
M6	200
M8	255
M10	310
M12	365
M14 and M16	420
M20 and M22	530
M24 and M27	640
M30	750
M36	860
M42	970
M48	1080
M56	1190
M64 to M100	1300
	1000

Note 8—Bolts, screws, and studs in diameters smaller than M10 are not normally hot-dip zinc-coated.

7.8.1 Internal threads shall be subject to acceptance gaging using GO and HI thread plug gages having size limits as established in 7.8. Threads of nuts tapped after zinc coating (4.7) shall meet GO and HI thread plug gaging requirements as tapped. Threads of nuts tapped prior to zinc coating (4.8) shall

🕼 А563М – 07

Steel Analyses for Class 853 Nuts ⁴ Class 1053 N A B C D E F 1053 Carbon: Heat analysis 0.33-0.40 0.38-0.48 0.15-0.25 0.20-0.25 0.20-0.25 0.20-0.25 0.20-0.25 0.20-0.25 0.20-0.25 0.20-0.25 0.20-0.25 0.19-0.26 0.19-0.55 Marganese: Heat analysis 0.90-1.20 0.70-0.90 0.80-1.35 0.40-1.20 0.66-1.00 0.90-1.20 0.40 min Product analysis 0.88-1.24 0.057-0.93 0.36-1.24 0.06-1.00 0.90-1.20 0.40 min Product analysis 0.07-0.15 0.040 max 0.060-0.12 0.035 max 0.040 max	Element				Compos	sition, %			
N A B C D E F Nuts Carbon: Heat analysis 0.33-0.40 0.38-0.48 0.15-0.25 0.15-0.25 0.20-0.53 0.40 max 0.040 max 0.040 max 0.040 max 0.040 max				Steel Ana	alyses for Class 8	S3 Nuts ^A			
Heat analysis 0.33-0.40 0.38-0.48 0.15-0.25 0.15-0.25 0.20-0.25 0.20-0.25 0.19-0.26 0.19-0.55 Manganese: Heat analysis 0.90-1.20 0.70-0.90 0.80-1.35 0.40-1.20 0.60-1.04 0.90-1.20 0.40 min Product analysis 0.96-1.24 0.67-0.93 0.76-1.39 0.40-1.20 0.60-1.04 0.90-1.20 0.40 min Product analysis 0.07-0.15 0.040 max 0.06-0.12 0.035 max 0.040		N	А	В	С	D	E	F	
Product analysis 0.31–0.42 0.36–0.50 0.14–0.26 0.14–0.26 0.18–0.27 0.19–0.26 0.19–0.55 Manganese: Heat analysis 0.90–1.20 0.70–0.90 0.80–1.35 0.40–1.20 0.66–1.00 0.90–1.20 0.40 min Product analysis 0.86–1.24 0.66–1.04 0.86–1.24 0.37 min Prosphorus: Heat analysis 0.07–0.15 0.040 max 0.06–0.12 0.035 max 0.040 max 0.040 max 0.045 max 0.040 max 0.040 max 0.040 max 0.040 max 0.045 max 0.040 max 0.055 max <									
Anganese: Heat analysis 0.90-1.20 0.70-0.90 0.80-1.35 0.40-1.20 0.66-1.00 0.90-1.20 0.40 min Product analysis 0.86-1.24 0.67-0.93 0.76-1.39 0.36-1.24 0.56-1.04 0.86-1.24 0.37 min Phosphorus: Heat analysis 0.07-0.15 0.040 max 0.06-0.125 0.035 max 0.040 max 0.045 max 0.045 max 0.055 max 0.055 max 0.050 max 0.055 max									
Heat analysis 0.90-1.20 0.70-0.90 0.80-1.35 0.40-1.20 0.60-1.00 0.90-1.20 0.40 min Product analysis 0.86-1.24 0.67-0.93 0.76-1.39 0.36-1.24 0.56-1.04 0.86-1.24 0.37 min Phosphorus: Heat analysis 0.07-0.15 0.040 max 0.060-0.12 0.035 max 0.040 max 0.040 max 0.040 max 0.040 max 0.040 max 0.040 max 0.045 max <t< td=""><td>Product analysis</td><td></td><td>0.31-0.42</td><td>0.36–0.50</td><td>0.14-0.26</td><td>0.14-0.26</td><td>0.18-0.27</td><td>0.19–0.26</td><td>0.19–0.55</td></t<>	Product analysis		0.31-0.42	0.36–0.50	0.14-0.26	0.14-0.26	0.18-0.27	0.19–0.26	0.19–0.55
Heat analysis 0.90-1.20 0.70-0.90 0.80-1.35 0.40-1.20 0.60-1.00 0.90-1.20 0.40 min Product analysis 0.86-1.24 0.67-0.93 0.76-1.39 0.36-1.24 0.56-1.04 0.86-1.24 0.37 min Phosphorus: Heat analysis 0.07-0.15 0.040 max 0.060-0.12 0.035 max 0.040 max 0.040 max 0.040 max 0.040 max 0.040 max 0.040 max 0.045 max <t< td=""><td>Manganese:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Manganese:								
Product analysis 0.86–1.24 0.67–0.93 0.76–1.39 0.36–1.24 0.56–1.04 0.86–1.24 0.37 min Phosphorus: Heat analysis 0.07–0.15 0.040 max 0.06–0.12 0.035 max 0.040 max 0.040 max 0.040 max 0.045 max 0.040 max 0.055 max 0.055 max 0.055 max 0.040 max			0.90-1.20	0.70-0.90	0.80-1.35	0.40-1.20	0.60-1.00	0.90-1.20	0.40 min
Heat analysis 0.07-0.15 0.040 max 0.06-0.12 0.035 max 0.040 max 0.040 max 0.040 max 0.040 max 0.045 max 0.046 max 0.045 max 0.045 max 0.046 max 0.045 max 0.040 max </td <td>Product analysis</td> <td></td> <td>0.86-1.24</td> <td>0.67–0.93</td> <td>0.76–1.39</td> <td>0.36-1.24</td> <td>0.56-1.04</td> <td>0.86-1.24</td> <td>0.37 min</td>	Product analysis		0.86-1.24	0.67–0.93	0.76–1.39	0.36-1.24	0.56-1.04	0.86-1.24	0.37 min
Heat analysis 0.07-0.15 0.040 max 0.06-0.12 0.035 max 0.040 max 0.040 max 0.040 max 0.040 max 0.045 max 0.046 max 0.045 max 0.045 max 0.046 max 0.045 max 0.040 max </td <td>Phosphorus:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Phosphorus:								
Product analysis 0.07-0.155 0.045 max 0.06-0.125 0.040 max 0.045 max 0.045 max 0.045 max 0.045 max 0.045 max 0.045 max 0.040 mix		0.07-0.15	0.040 max	0.06-0.12	0.035 max	0.040 max	0.040 max	0.040 max	0.046 max
Heat analysis 0.050 max 0.050 max 0.050 max 0.040 max 0.050 max 0.040 max 0.040 max 0.045 max 0.040 mix 0.020 min </td <td>,</td> <td></td> <td></td> <td></td> <td></td> <td>0.045 max</td> <td>0.045 max</td> <td>0.045 max</td> <td></td>	,					0.045 max	0.045 max	0.045 max	
Heat analysis 0.050 max 0.050 max 0.050 max 0.040 max 0.050 max 0.040 max 0.040 max 0.045 max 0.040 mix 0.020 min </td <td>Sulfur</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Sulfur								
Product analysis 0.055 max 0.055 max 0.055 max 0.045 max 0.015 max 0.045 max 0.005 max 0.025 max 0.010 max 0.045 max 0.005 max 0.010 max 0.045 max 0.005 max 0.010 max 0.045 max 0.055 max 0.015 max 0.045 max 0.055 max 0.015 max 0.045 max		0.050 max	0.050 max	0.050 max	0.040 max	0.050 max	0.040 max	0.040 max	0.050 max
Heat analysis 0.20-0.90 0.15-0.35 0.30-0.50 0.15-0.35 0.25-0.55 0.13-0.37 0.25-0.55 0.13-0.37 0.15-0.35 0.13-0.37 0.13-0.37 0.13-0.37 0.13-0.37 0.13-0.37 0.13-0.37 0.13-0.37 0.13-0.37 0.13-0.37 0.13-0.37 0.13-0.37 0.13-0.37 0.13-0.37 0.13-0.37 0.13-0.37 0.13-0.37 0.13-0.37 0.13-0.37 0.13-0.37 0.20-0.50 0.30-0.50 0.30-0.50 0.30-0.50 0.30-0.60 0.20-0.40 0.20 min ^B Nickel: Heat analysis 0.30-0.50 0.30-0.50 0.30-0.50 0.50-1.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Heat analysis 0.20-0.90 0.15-0.35 0.30-0.50 0.15-0.35 0.25-0.50 0.15-0.35 0.13-0.37 0.10 0.20-0.40 0.20 min 0.17-0.43 0.17-0.43 0.17 min 0.17 min 0.10 min ²	Ciliaan								
Product analysis 0.15–0.95 0.13–0.37 0.25–0.55 0.13–0.37 0.20–0.55 0.13–0.37 0.13–0.37 Copper: Heat analysis 0.25–0.55 0.25–0.45 0.20–0.40 0.20–0.50 0.30–0.50 0.30–0.60 0.20–0.40 0.20 min Product analysis 0.22–0.58 0.22–0.48 0.17–0.43 0.17–0.53 0.27–0.53 0.27–0.63 0.17–0.43 0.17 min Nickel: Heat analysis 1.00 max 0.25–0.45 0.50–0.80 0.25–0.50 0.50–0.80 0.30–0.60 0.20–0.40 0.20 min ⁸ Product analysis 1.00 max 0.25–0.45 0.50–0.80 0.25–0.53 0.47–0.83 0.27–0.63 0.17–0.43 0.17 min Chromium: Heat analysis 0.30–1.25 0.45–0.65 0.50–0.75 0.30–0.50 0.50–1.00 0.60–0.90 0.45–0.65 0.30 min Vanadium: Heat analysis 0.020 min Molybdenum: Heat analysis 0.06 max 0.10 max 0.15 min ⁸		0 20-0 90	0 15-0 35	0 30_0 50	0 15_0 35	0.25_0.50	0 15-0 35	0 15-0 35	
Heat analysis 0.25-0.55 0.25-0.45 0.20-0.40 0.20-0.50 0.30-0.50 0.30-0.60 0.20-0.40 0.20 min Nickel: 1.00 max 0.25-0.45 0.50-0.80 0.25-0.50 0.50-0.80 0.30-0.60 0.20-0.40 0.20 min Product analysis 1.00 max 0.25-0.45 0.50-0.80 0.25-0.50 0.50-0.80 0.30-0.60 0.20-0.40 0.20 min Product analysis 1.03 max 0.25-0.45 0.50-0.80 0.22-0.53 0.47-0.83 0.27-0.63 0.17-0.43 0.17 min Chromium: Heat analysis 0.30-1.25 0.45-0.65 0.50-0.75 0.30-0.50 0.50-1.00 0.60-0.90 0.45-0.65 0.30 min Product analysis 0.30-1.25 0.45-0.65 0.50-0.75 0.30-0.50 0.50-1.05 0.55-0.95 0.42-0.68 0.25 min Vanadium: Heat analysis 0.020 min Heat analysis 0.020 min Heat analysis 0.06	,								
Heat analysis 0.25-0.55 0.25-0.45 0.20-0.40 0.20-0.50 0.30-0.50 0.30-0.60 0.20-0.40 0.20 min Product analysis 0.22-0.58 0.22-0.48 0.17-0.43 0.17-0.53 0.27-0.53 0.27-0.63 0.17-0.43 0.17 min Nickel: Heat analysis 1.00 max 0.25-0.45 0.50-0.80 0.22-0.58 0.30-0.60 0.20-0.40 0.20 min Product analysis 1.03 max 0.25-0.45 0.50-0.80 0.22-0.53 0.47-0.83 0.27-0.63 0.17-0.43 0.17 min Chromium: Heat analysis 0.30-1.25 0.45-0.65 0.50-0.75 0.30-0.50 0.50-1.00 0.60-0.90 0.45-0.65 0.30 min Product analysis 0.30-1.25 0.45-0.65 0.50-0.75 0.30-0.50 0.50-1.05 0.55-0.95 0.42-0.68 0.25 min Vanadium: Heat analysis 0.020 min Heat analysis 0.020 min Wolddenum: Heat analysis 0.06 max <td>Copport</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Copport								
Product analysis 0.22–0.58 0.22–0.48 0.17–0.43 0.17–0.53 0.27–0.53 0.27–0.63 0.17–0.43 0.17 min Nickel: Heat analysis 1.00 max 0.25–0.45 0.50–0.80 0.25–0.50 0.50–0.80 0.30–0.60 0.20–0.40 0.20 min ^B Product analysis 1.03 max 0.22–0.48 0.47–0.83 0.22–0.53 0.47–0.83 0.27–0.63 0.17–0.43 0.17 min Chromium: Heat analysis 0.30–1.25 0.45–0.65 0.50–0.75 0.30–0.50 0.50–1.00 0.60–0.90 0.45–0.65 0.30 min Product analysis 0.30–1.25 0.45–0.68 0.47–0.83 0.27–0.53 0.45–1.05 0.55–0.95 0.42–0.68 0.25 min Vanadium: Heat analysis 0.020 min <		0 25-0 55	0 25-0 45	0 20-0 40	0 20-0 50	0 30-0 50	0 30-0 60	0 20-0 40	0.20 min
Heat analysis 1.00 max 0.25–0.45 0.50–0.80 0.25–0.50 0.50–0.80 0.30–0.60 0.20–0.40 0.20 min ^B Product analysis 1.03 max 0.22–0.48 0.47–0.83 0.22–0.53 0.47–0.83 0.27–0.63 0.17–0.43 0.17 min Chromium: Heat analysis 0.30–1.25 0.45–0.65 0.50–0.75 0.30–0.50 0.50–1.00 0.60–0.90 0.45–0.65 0.30 min Vanadium: Heat analysis 0.020 min 0.20 min 0.10 min 0.15 min ^B Wanadium: Heat analysis 0.020 min 0.10 max 0.15 min ^B 0.15 min ^B									
Heat analysis 1.00 max 0.25–0.45 0.50–0.80 0.25–0.50 0.50–0.80 0.30–0.60 0.20–0.40 0.20 min ^B Product analysis 1.03 max 0.22–0.48 0.47–0.83 0.22–0.53 0.47–0.83 0.27–0.63 0.17–0.43 0.17 min Chromium: Heat analysis 0.30–1.25 0.45–0.65 0.50–0.75 0.30–0.50 0.50–1.00 0.60–0.90 0.45–0.65 0.30 min Vanadium: Heat analysis 0.020 min 0.25 min Molybdenum: Heat analysis 0.06 max 0.10 max 0.15 min ^B									
Product analysis 1.03 max 0.22–0.48 0.47–0.83 0.22–0.53 0.47–0.83 0.27–0.63 0.17–0.43 0.17 min Chromium: Heat analysis 0.30–1.25 0.45–0.65 0.50–0.75 0.30–0.50 0.50–1.00 0.60–0.90 0.45–0.65 0.30 min Vanadium: Heat analysis 0.42–0.68 0.47–0.83 0.27–0.53 0.45–1.05 0.55–0.95 0.42–0.68 0.25 min Vanadium: Heat analysis 0.020 min <		1.00 max	0.25 0.45	0.50, 0.80	0.25 0.50	0.50, 0.80	0.20, 0.60	0.20 0.40	0.20 min^B
Chromium: Heat analysis 0.30–1.25 0.45–0.65 0.50–0.75 0.30–0.50 0.50–1.00 0.60–0.90 0.45–0.65 0.30 min Product analysis 0.25–1.30 0.42–0.68 0.47–0.83 0.27–0.53 0.45–1.05 0.55–0.95 0.42–0.68 0.25 min Vanadium: Heat analysis 0.020 min Product analysis 0.020 min									
Heat analysis Product analysis 0.30-1.25 0.25-1.30 0.45-0.65 0.42-0.68 0.50-0.75 0.47-0.83 0.30-0.50 0.27-0.53 0.50-1.00 0.45-1.05 0.60-0.90 0.55-0.95 0.45-0.65 0.42-0.68 0.30 min 0.25 min Vanadium: Heat analysis 0.020 min <t< td=""><td>r roudot analysis</td><td>1.00 max</td><td>0.22 0.10</td><td></td><td></td><td></td><td>0.27 0.00</td><td>0.17 0.10</td><td>0.17 11111</td></t<>	r roudot analysis	1.00 max	0.22 0.10				0.27 0.00	0.17 0.10	0.17 11111
Product analysis 0.25-1.30 0.42-0.68 0.47-0.83 0.27-0.53 0.45-1.05 0.55-0.95 0.42-0.68 0.25 min Vanadium: Heat analysis 0.020 min <td>Chromium:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Chromium:								
Vanadium: Heat analysis 0.020 min Product analysis 0.020 min Molybdenum: Heat analysis 0.06 max 0.10 max 0.15 min ^B									
Heat analysis 0.020 min	Product analysis	0.25–1.30	0.42-0.68	0.47–0.83	0.27-0.53	0.45–1.05	0.55–0.95	0.42–0.68	0.25 min
Product analysis 0.010 min eVI c Molybdenum: Heat analysis 0.06 max 0.10 max 0.15 min ^B	Vanadium:								
Molybdenum: 0.06 max 0.10 max 0.10 max 0.15 min ^B	Heat analysis				0.020 min				
Heat analysis 0.06 max 0.10 max 0.15 min ^B	Product analysis			cumen	0.010 min	VIEW			
Heat analysis 0.06 max 0.10 max 0.15 min ^B	Molybdenum:								
Product analysis 0.07 max [A 563] (-07) 0.11 max 0.14 min				0.06 max		0.10 max			0.15 min ^{<i>B</i>}
	Product analysis			0.07 max	563M-07	0.11 max			0.14 min
Titanium; standards. iteh.ai/catalog/standards/sist/6a05ac2t-58d1-4622-b2ea-1t43t/1da155/astm-a563m-0/	Heat analysis			15/ 5150 000 <i>5</i> 0		0.05 max			

^A Class 8S3 nuts may be made of any of the listed steel analyses. Selection of steel analysis shall be the option of the manufacturer. ^B Nickel or molybdenum may be used.

meet HI thread plug gaging requirements prior to zinc coating and GO thread plug gaging requirements after zinc coating.

Product analysis

7.9 Nuts to be used on bolts, screws, or studs that are hot-dip or mechanically zinc-coated to requirements other than specified in 7.8 shall be tapped oversize by a diametral allowance sufficient to permit assembly on the coated externally threaded fastener.

Note 9—If the over-tapping diametral allowance is greater than the limit specified in 7.8, the purchaser is cautioned that the nut may not meet the proof load stress specified in Table 3.

7.10 When specifically permitted by the purchaser, nuts for bolts, screws, or studs having an electrodeposited coating, such as cadmium, zinc, etc., or having a chemically applied coating may be tapped oversize by a diametral allowance sufficient to permit assembly on the coated externally threaded fastener.

Note 10—If the overtapping diametral allowance is greater than the limit specified in 7.8, the purchaser is cautioned that the nut may not meet the proof load stress specified in Table 3.

8. Workmanship

8.1 Surface discontinuity limits shall be in accordance with Specification F812/F812M.

9. Number of Tests

9.1 The requirements of this specification shall be met in continuous mass production for stock, and the manufacturer shall make sample inspections to ensure that the product conforms to the specified requirements (Section 15). Additional tests of individual shipments of material are not ordinarily contemplated. Individual heats of steel are not identified in the finished product.