INTERNATIONAL STANDARD

First edition 2014-12-15

Reciprocating internal combustion engines — Vocabulary of components and systems —

Part 10: Ignition systems

iTeh ST Moteurs alternatifs à combustion interne — Vocabulaire des composants et des systèmes — Stanie 10: Systèmes d'allumage

<u>ISO 7967-10:2014</u> https://standards.iteh.ai/catalog/standards/sist/b7d90559-25d6-4536b4c2-1ca405ad3e54/iso-7967-10-2014

Reference number ISO 7967-10:2014(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 7967-10:2014</u> https://standards.iteh.ai/catalog/standards/sist/b7d90559-25d6-4536b4c2-1ca405ad3e54/iso-7967-10-2014

COPYRIGHT PROTECTED DOCUMENT

© ISO 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents

Foreword		
1	Scope	
2	Terms and definitions1	
	2.1	Types of ignition systems 1
	2.2	Conventional ignition systems 3
	2.3	Electronic ignition systems 7
	2.4	Computer-controlled ignition systems
	2.5	Parameters for ignition systems 9
Bibliography 11		

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 7967-10:2014</u> https://standards.iteh.ai/catalog/standards/sist/b7d90559-25d6-4536b4c2-1ca405ad3e54/iso-7967-10-2014

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 70, *Internal combustion engines*.

ISO 7967 consists of the following parts, under the general title Reciprocating internal combustion engines — Vocabulary of components and systems alog/standards/sist/b7d90559-25d6-4536-

b4c2-1ca405ad3e54/iso-7967-10-2014

- Part 1: Structure and external covers
- Part 2: Main running gear
- Part 3: Valves, camshaft drives and actuating mechanism
- Part 4: Pressure charging and air/exhaust gas ducting systems
- Part 5: Cooling systems
- Part 6: Lubricating systems
- Part 7: Governing systems
- Part 8: Starting systems
- Part 9: Control and monitoring systems
- Part 10: Ignition systems
- Part 11: Fuel systems
- Part 12: Exhaust emission control systems

Reciprocating internal combustion engines — Vocabulary of components and systems -

Part 10: **Ignition systems**

1 Scope

This part of ISO 7967 establishes a vocabulary for ignition systems of reciprocating internal combustion engines.

ISO 2710-1 gives a classification of reciprocating internal combustion engines and defines basic terms and definitions of such engines and their characteristics.

In this part of ISO 7967, the terms are classified as follows:

- a) types of ignition systems;
- b) conventional ignition systems; ANDARD PREVIEW
- electronic ignition systems; c)
- computer-controlled ignition systems; d)
- parameters for ignition systems. ISO 7967-10:2014 e) https://standards.iteh.ai/catalog/standards/sist/b7d90559-25d6-4536b4c2-1ca405ad3e54/iso-7967-10-2014

2 **Terms and definitions**

For the purposes of this document, the following terms and definitions apply.

2.1 Types of ignition systems

2.1.1

ignition system

ignition device system to ignite the fuel-air mixture in the cylinder

2.1.2

battery coil ignition system

ignition system (2.1.1) by battery and ignition coil

Note 1 to entry: See Figure 1.

Figure 1 — Typical configuration of battery coil ignition system

<u>ISO 7967-10:2014</u>

2.1.3

https://standards.iteh.ai/catalog/standards/sist/b7d90559-25d6-4536b4c2-1ca405ad3e54/iso-7967-10-2014

magneto ignition system

ignition system (2.1.1) by magneto (2.2.1)

2.1.4

high-tension ignition system

ignition system (2.1.1) by high voltage electricity of secondary circuit of ignition coil produced by intermitting the current in the primary circuit

2.1.5

dual ignition system

ignition system (2.1.1) with duplicate lines for redundancy

2.1.6

multi-point ignition system

ignition system (2.1.1) with more than two igniters installed on one cylinder

Note 1 to entry: Ignition system with two igniters is called a two-point ignition system.

2.1.7

electronic ignition system

ignition system (2.1.1) with ignition timing control by electronic device or circuit

2.1.8

conventional ignition system

ignition system (2.1.1) with mechanical ignition timing control by the *contact breaker* (2.2.12) of the *distributor* (2.2.9)

2.1.9 electronic ignition system with breaker

electronic ignition system (2.1.7) with contact breaker (2.2.12)

2.1.10

breakerless electronic ignition system

electronic ignition system (2.1.7) without contact breaker (2.2.12)

2.1.11

computer-controlled ignition system

digital ignition system

computer-based ignition system which is usually a part of the electronic engine control unit (ECU)

Note 1 to entry: ECU consists of a central control unit (CPU) or a microprocessor, random access memory (RAM), read only memory (ROM), and input/output interfaces. Based on information from input sensors (engine air flow, coolant temperature, crank position, throttle position, etc.), ECU determines optimum settings for the output actuators of fuel injection, ignition timing, idle speed, etc..

2.1.12

micro-pilot ignition system

ignition system (2.1.1) for gas engines, in which ignition takes place by the flame made in the small subcombustion chamber (pre-chamber) provided on the cylinder head

2.2 Conventional ignition systems

2.2.1 iTeh STANDARD PREVIEW

magneto

electric generator for ignition using permanent magnet h.ai)

2.2.2

ISO 7967-10:2014

two-point ignition magneto magneto (2.2.1) for two-point ignition which has one rotor and two sets of electric circuits

2.2.3

flywheel magneto

magneto (2.2.1) with the rotor which also works as a flywheel for the engine

2.2.4

starting vibrator

electromagnetic vibrator which supplies intermittent electric current starting from the battery to the primary circuit of the *magneto* (2.2.1) directly connected with the engine to assist ignition

2.2.5

permanent magnet circuit

magnetic circuit which includes the components such as permanent magnets and armatures

2.2.6

ignition switch

switch which opens and closes the primary circuit of the *ignition system* (2.1.1)

2.2.7

earth switch

stop switch

switch to short-circuit the primary circuit of the *magneto* (2.2.1) to shut-down the engine

2.2.8

ignition coil

ignition armature

coil which produces high voltage for ignition in the *battery coil ignition system* (2.1.2) or the *magneto ignition system* (2.1.3)

Note 1 to entry: See Figure 2.

Figure 2 — Typical ignition coil

2.2.9

distributor

device which distributes high voltage electricity for ignition to cylinders of multi-cylinder engine in the proper order

Note 1 to entry: See Figure 3.

Figure 3 — Typical construction of distributor

2.2.10 distributor cap

distributor cover

part of *distributor* (2.2.9) which has the arrangement of terminals for proper distribution of high voltage electricity for ignition

2.2.11 distributor rotor

distributor arm

rotating part of *distributor* (2.2.9) which distributes high voltage electricity to the terminals of *distributor cap* (2.2.10)

2.2.12

contact breaker

device which opens and closes the primary circuit of the *distributor* (2.2.9)

2.2.13

breaker points

contact points electric terminal in the *distributor* (2.2.9) for opening and closing of primary circuit