

SLOVENSKI STANDARD SIST EN IEC 60375:2018

01-oktober-2018

Nadomešča:

SIST EN 60375:2004

Konvencije o električnih tokokrogih (IEC 60375:2018)

Conventions concerning electric circuits (IEC 60375:2018)

iTeh STANDARD PREVIEW
Conventions concernant les circuits électriques (IEC 60375:2018)
(standards.iteh.ai)

Ta slovenski standard je istoveten zr en HENJEC 60375:2018

https://standards.iteh.ai/catalog/standards/sist/8aaf0f25-28fa-4fea-b255-

ICS:

17.220.01 Elektrika. Magnetizem.

Splošni vidiki

Electricity. Magnetism.

General aspects

SIST EN IEC 60375:2018

en

SIST EN IEC 60375:2018

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN IEC 60375:2018

EUROPEAN STANDARD

EN IEC 60375

NORME EUROPÉENNE

EUROPÄISCHE NORM

August 2018

ICS 01.060; 01.080.40

Supersedes EN 60375:2003

English Version

Conventions concerning electric circuits (IEC 60375:2018)

Conventions concernant les circuits électriques (IEC 60375:2018)

Vereinbarungen für Stromkreise (IEC 60375:2018)

This European Standard was approved by CENELEC on 2018-06-12. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

https://standards.iteh.ai/catalog/standards/sist/8aaf0f25-28fa-4fea-b255-9eba409118cc/sist-en-iec-60375-2018

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

EN IEC 60375:2018

European foreword

The text of document 25/620/FDIS, future edition 3 of IEC 60375, prepared by IEC/TC 25 "Quantities and units, and their letter symbols" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 60375:2018.

The following dates are fixed:

•	latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	2019-03-12
_	latest data by which the national	(dow)	2021 06 12

 latest date by which the national standards conflicting with the document have to be withdrawn (dow) 2021-06-12

This document supersedes EN 60375:2003.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 60375:2018 was approved by CENELEC as a European Standard without any modification TANDARD PREVIEW

(standards.iteh.ai)

EN IEC 60375:2018

Annex ZA (normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu.

<u>Publication</u>	<u>Year</u>	<u>Title</u>	EN/HD	<u>Year</u>
IEC 60617-DB	_	Graphical symbols for diagrams	-	-

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN IEC 60375:2018

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN IEC 60375:2018

IEC 60375

Edition 3.0 2018-05

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Conventions concerning electric circuits D PREVIEW

Conventions concernant les circuits électriques

SIST EN IEC 60375:2018 https://standards.iteh.ai/catalog/standards/sist/8aaf0f25-28fa-4fea-b255-9eba409118cc/sist-en-iec-60375-2018

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 01.060; 01.080.40 ISBN 978-2-8322-5597-1

Warning! Make sure that you obtained this publication from an authorized distributor.

Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

CONTENTS

FC	DREWO	RD	5
1	Scop	e	7
2	Norm	native references	7
3	Term	is and definitions	7
4	Orier	ntation of geometrical objects	15
	4.1	Orientation of a curve	
	4.2	Orientation of a surface	
	4.3	Arrows perpendicular to the plane of the figure	15
5	Conv	rentions concerning currents	15
	5.1	Physical direction of current	15
	5.2	Reference direction of current	
	5.3	Indication of the reference direction for currents	
	5.3.1	Indication of the reference direction for currents for a branch	16
	5.3.2	Indication of the reference direction for mesh currents	16
	5.4	Kirchhoff law for nodes	17
6	Conv	rentions concerning voltages	17
	6.1	Physical polarity of voltage	17
	6.2		
	6.3	Reference polarity for a pair of nodes	18
	6.3.1		18
	6.3.2		18
	6.3.3	Third method SIST EN IEC 60375:2018	19
	6.4	Kirchhoff law for meshes ai/catalog/standards/sist/8aaf0f25-28fa-4fea-b255-	19
7	Conv	yentions concerning power	20
	7.1	Physical direction of power	20
	7.2	Reference direction of power	20
	7.3	Indication of the reference direction of power	20
	7.4	Combined conventions	20
	7.4.1	General	20
	7.4.2	Motor convention	21
	7.4.3	Generator convention	21
8	Conv	rentions concerning two-port networks	21
9	Conv	rentions concerning sources	22
	9.1	Conventions concerning voltage sources	22
	9.1.1		
	9.1.2	•	
	9.2	Conventions concerning current sources	23
	9.2.1	Independent current sources	23
	9.2.2	Controlled current sources	23
10	Conv	rentions concerning passive elements	24
	10.1	General conventions	24
	10.2	Resistive elements	
	10.2.	1 Resistive two-terminal elements	24
	10.2.	2 Resistive <i>n</i> -terminal elements	25
	10.3	Capacitive elements	26
	10.3.	1 Capacitive two-terminal elements	26

10.3.2 Capacitive <i>n</i> -terminal elements	
10.4 Inductive elements	
10.4.1 Inductive two-terminal elements	
10.4.2 Inductive <i>n</i> -port elements	
11 Complex notation	
11.1 General	
11.2 Conventions concerning complex representation of sinusoidal quantities11.3 Reference direction of a complex current	
11.4 Reference polarity for a complex voltage	
11.5 Complex representation of Ohm's law	
11.6 Conventions concerning the graphical representation of phasors	
11.7 Conventions concerning phase differences	
11.8 Conventions concerning power	
11.8.1 Time-dependent electric power	
11.8.2 Complex power	
Bibliography	37
Figure 1 – Orientation of a curve	15
Figure 2 – Orientation of a surface	15
Figure 3 – Indication of the reference direction for a current by an arrow	
Figure 4 – Indication of the reference direction using the node names	
Figure 5 – Indication of the reference direction for mesh currents	
Figure 6 – Examples of the Kirchhoff law for nodes	
Figure 7 – Indication of the reference/polarity by means of plus and minus signs	
Figure 8 – Simplified indication of the reference polarity by means of plus signs	
Figure 9 – Indication of the reference polarity by an arrow	
Figure 10 – Indication of the reference polarity using the node names	
Figure 11 – Simplified indication of the reference polarity using the node names	19
Figure 12 – Examples of the Kirchhoff law for meshes	20
Figure 13 – Indication of the reference direction of power	20
Figure 14 – Examples of motor conventions	21
Figure 15 – Examples of generator conventions	21
Figure 16 – A reference convention for a two-port network	22
Figure 17 – Graphical representation of an independent voltage source	
Figure 18 – Graphical representation of a voltage source controlled by a voltage:	
$u_s = \alpha u_c$	22
· · · ·	
Figure 19 – Graphical representation of a voltage source controlled by a current: $\mu = Ri$	22
$u_{\rm s} = \beta i_{\rm c}$	
Figure 20 – Graphical representation of an independent current source	23
Figure 21 – Graphical representation of a current source controlled by a voltage:	
$i_s = \gamma u_c$	24
Figure 22 – Graphical representation of a current source controlled by a current:	
$i_{\rm s} = \delta i_{\rm c}$	24
Figure 23 – Examples of graphical representations of a two-terminal resistive element	
g = = = =	20

Figure 24 – Examples of the graphical representation of a four-terminal resistive element	25
Figure 25 – Examples of the graphical representation of a two-terminal capacitive element	26
Figure 26 – Examples of the graphical representation of a four-terminal capacitive element	27
Figure 27 – Examples of the graphical representation of a two-terminal inductive element	29
Figure 28 – Examples of the graphical representation of a three-port inductive element	30
Figure 29 – Examples of the Kirchhoff law for nodes in complex notation	33
Figure 30 – Examples of the Kirchhoff law for meshes in complex notation	34
Figure 31 – Examples of graphical representation of reference directions and polarities in Ohm's law for a complex two-terminal element	35
Figure 32 – Graphical representation of a phasor in the complex plane	35
Figure 33 – Graphical representation of phase difference in the complex plane	35
Figure 34 – Examples of the reference directions for time-dependent electric power	36
Figure 35 – Examples of the reference directions for the complex power	36

iTeh STANDARD PREVIEW (standards.iteh.ai)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

CONVENTIONS CONCERNING ELECTRIC CIRCUITS

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas laccess to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies rds/sist/8aaf0f25-28fa-4fea-b255-
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60375 has been prepared by IEC technical committee 25: Quantities and units, and their letter symbols.

This third edition cancels and replaces the second edition issued in 2003. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) the clause on conventions concerning magnetic circuits has been removed; accordingly the title of the document has been abbreviated to read "Conventions concerning electric circuits":
- b) text and figures have been revised and homogenised;
- c) Clause 3 has been structured into subclauses;
- d) Clause 4 Orientation of geometrical objects has been inserted, and thus the clause numbering has been altered.

IEC 60375:2018 © IEC 2018

- 6 **-**

The text of this standard is based on the following documents:

FDIS	Report on voting
25/620/FDIS	25/622/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

iTeh STANDARD PREVIEW (standards.iteh.ai)

-7-

CONVENTIONS CONCERNING ELECTRIC CIRCUITS

1 Scope

This International Standard specifies the rules for signs and reference directions and reference polarities for electric currents and voltages in electric networks.

In Clauses 3 to 10, the time dependence is arbitrary. It is assumed that the wavelength of the highest frequency involved is larger than the largest distance between two points of the network; processes are considered to be quasi-static. Clause 11 specifies the rules and recommendations for complex notation.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60617, Graphical symbols for diagrams 1 RD PREVIEW

3 Terms and definitions (standards.iteh.ai)

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1

orientation

<of a curve property of a curve described by the position vector r(u) which is associated with increasing or decreasing values of the parameter u

[SOURCE: IEC 60050-102:2007, 102-04-19]

3.2

orientation

<of a surface> for a surface having a tangent plane at any point, property determined by the choice, continuously from point to point, of one of the two normal unit vectors at each point

[SOURCE: IEC 60050-102:2007, 102-04-36, modified – Note 1 to entry omitted.]

3.3

electric charge

additive scalar quantity, associated with elementary particles and with macroscopic matter that characterizes their electromagnetic interactions

¹ IEC 60617 is a database containing symbols referenced in the form (IEC 60617-Sxxxxx) where Sxxxxx is the identity number of the symbol.