INTERNATIONAL STANDARD

ISO 1355

First edition 1989-11-15

Metallic materials — Hardness test — Calibration of standardized blocks to be used for Rockwell superficial hardness testing machines (scales 15N, 30N, 45N, 15T, 30T and 45T)

iTeh STANDARD PREVIEW

Matériaux métalliques Essai de dureté — Étalonnage des blocs de référence à utiliser pour les machines d'essai de dureté superficielle Rockwell (échelles 15N, 30N, 45N, 15T, 30T et 45T)

https://standards.iteh.ai/catalog/standards/sist/4a83546e-4a0f-4c8a-8d98-5a4d4d528980/iso-1355-1989

ISO 1355: 1989 (E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting.

(Standards.iteh.ai)

International Standard ISO 1355 was prepared by Technical Committee ISO/TC 164, *Mechanical testing of metals.*ISO 1355:1989

https://standards.iteh.ai/catalog/standards/sist/4a83546e-4a0f-4c8a-8d98-

It cancels and replaces ISO Recommendation R 1355 51970 of which it constitutes a technical revision.

Annex A forms an integral part of this International Standard.

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

Metallic materials — Hardness test — Calibration of standardized blocks to be used for Rockwell superficial hardness testing machines (scales 15N, 30N, 45N, 15T, 30T and 45T)

1 Scope

This International Standard specifies a method for the calibration of standardized blocks to be used in Rockwell superficial hardness testing machines (scales 15N, 30N, 45N, 15T, 30T and 45T) for the indirect verification of these machines, as described in ISO 1079.

3.2 Each metal block to be standardized shall be of a thickness not less than 6 mm.

ISO 1355: 1989 (E)

3.3 The standardized blocks shall be free of magnetism. It is recommended that the manufacturer ensures that the blocks, if of steel, have been demagnetized at the end of the manufacturing process (before calibration).

(standards iteh.ar

3.4 The maximum deviation in flatness of the surfaces shall not exceed 0,010 mm. The bottom of the block shall not be 2 Normative references 89 convex. ist/4a83546e-4a0f-4c8a-8d98-

https://standards.iteh.ai/catalog/standards/sis The following standards contain provisions which dethicough 0/iso-1. The 1 maximum error in parallelism shall not exceed

reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards listed below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 468: 1982, Surface roughness - Parameters, their values and general rules for specifying requirements.

ISO 1024: 1989, Metallic materials — Hardness test — Rockwell superficial test (scales 15N, 30N, 45N, 15T, 30T and 45T).

ISO 1079: 1989, Metallic materials — Hardness test — Verification of Rockwell superficial hardness testing machines (scales 15N, 30N, 45N, 15T, 30T and 45T).

ISO 6507-1: 1982, Metallic materials — Hardness test — Vickers test - Part 1: HV 5 to HV 100.

Manufacture

3.1 The block shall be specially prepared and the attention of the manufacturer is drawn to the need to use a manufacturing process which will give the necessary homogeneity, stability of structure and uniformity of hardness.

0,020 mm/50 mm.

- 3.5 The test surface shall be free from scratches which interfere with the measurement of the indentations. The surface roughness $R_{\rm a}$ shall not exceed 0,3 $\mu{\rm m}$ for the test surface and 0,8 μ m for the bottom surface; sampling length l=0.80 mm (see ISO 468).
- 3.6 To permit checking that no material is subsequently removed from the standardized block, its thickness at the time of standardization shall be marked on it to the nearest 0,1 mm, or an identifying mark shall be made on the test surface (see clause 8).

4 Standardizing machine

- In addition to fulfilling the general requirements specified in ISO 1079 the standardizing machine shall also meet the requirements given in 4.2.
- **4.2** The machine shall be verified directly. Direct verification involves
 - verification of the test force (see 4.2.1);
 - verification of the indenter (see 4.2.2 and 4.2.3);
 - verification of the measuring device (see 4.2.4).

4.2.1 The preliminary test force F_0 shall be 29,42 N \pm 0,5 % at the initial application and after the additional test force F_1 has been removed.

The total test force F shall be correct to within \pm 0,25 % of the nominal test force (see table 1).

Table 1

Rockwell superficial hardness scale	$\begin{array}{c} \textbf{Preliminary} \\ \textbf{test force}, F_0 \\ \textbf{(Nominal value)} \\ \textbf{(N)} \end{array}$	Total test force, F (Nominal value) (N)
15N	29,42	147,1
30N	29,42	294,2
45N	29,42	441,3
15T	29,42	147,1
30T	29,42	294,2
45T	29,42	441,3

4.2.2 The diamond cone indenter shall meet the following requirements:

a) The diamond cone shall have a mean included angle of $120^{\circ} \pm 0,10^{\circ}$. In each measured section the included angle shall be $120^{\circ} \pm 0,17^{\circ}$.

The number of measured sections is as follows:

ness of the cone is not measured.

or

- two sections when the error in roundness of the cone, adjacent to the blend, measured in a section normal to the indenter axis, does not exceed 0,004 mm. These sections shall be situated at the positions of maximum and minimum error in roundness.

The error of roundness is defined as the greatest radial distance between any point on the conical surface and the circumscribing circle.

Deviations from straightness of the generator of the diamond cone, adjacent to the blend, shall not exceed 0,000 5 mm over a minimum length of 0,35 mm.

b) The spherical tip of the diamond cone shall have a mean radius of 0,200 mm ± 0,005 mm. In each measured section as defined in a), the radius shall be 0,200 mm \pm 0,007 mm and local deviations from it shall not exceed 0,002 mm.

The surfaces of the cone and the spherical tip shall blend in a truly tangential manner.

c) The inclination of the axis of the diamond cone to the axis of the indenter holder (normal to the seating surface) shall be within 0,3°.

d) Tests shall be made in accordance with the procedure described in clause 5, on a minimum of four blocks as follows:

scale 15N: one block with a hardness

88 to 94 HR15N

scale 30N: one block with a hardness

70 to 80 HR30N

one block with a hardness

50 to 60 HR30N

scale 45N: one block with a hardness

20 to 30 HR45N

For each block the mean hardness value of three indentations made using the indenter to be verified, shall not differ from the mean hardness value of the three indentations obtained with the standardizing indenter by more than ± 0,4 Rockwell superficial hardness units. The indentations with the indenter to be verified and with the standardizing indenter should be carried out in such a way that the indentations of both indenters are in each case adjacent.

NOTE - The standardizing indenter is the indenter or the indenters recognized as the reference indenter(s) at national level.

4.2.3 The steel ball indenter shall meet the requirements of ISO 1079 and the following requirements:

standards at the diameter of the steel ball indenter when measured at not less than three positions, shall not differ from the ISO 1355: nominal diameter by more than \pm 0,002 mm.

at least eight sections at random when the round standards bist/The hardness of the steel ball shall be not less than 8980/iso8505AV 909 when determined in accordance with ISO 6507-1, and applying the appropriate correction for curvature.

> **4.2.4** The measuring device shall be capable of measuring vertical displacements within \pm 0,2 of a scale unit.

Standardizing procedure

The standardized blocks shall be calibrated in a standardizing machine as described in clause 4, at a temperature of 23 °C \pm 5 °C, using the general procedure described in ISO 1024.

- 5.1 The mechanism which controls the application of the test force shall either
 - a) employ a device, e.g. a spring, to reduce the velocity of penetration of the indenter during the period of penetration

b) employ a device to maintain a constant velocity of the indenter during the period of increasing force.

5.2 Standard machine type a) [see 5.1 a)]

The initial velocity (i.e. the velocity of the indenter prior to penetration of the test block) shall be not greater than 1 mm/s.

Bring the indenter into contact with the test surface and apply the preliminary test force ($F_0 = 29,42 \text{ N}$) without shock or vibration. The duration of the preliminary test force F_0 shall be not less than 1 s and not greater than 10 s.

Set the measuring device to its datum position and, without shock or vibration, increase the force from F_0 to F in not less than 1 s and not greater than 8 s.

The duration of the additional test force F_1 shall be not less than 3 s and not greater than 5 s.

The final reading shall be made immediately after the additional test force has been removed.

5.3 Standard machine type b) [see 5.1 b)]

The constant velocity of the indenter during the period of increasing force shall be not less than 0,005 mm/s and not greater than 0,020 rnm/s.

Bring the indenter into contact with the test surface and apply the preliminary test force ($F_0 = 29,42 \text{ N}$) without shock or vibration. The duration of the preliminary test force F_0 shall be not less than 1 s nor greater than 10 s.

Set the measuring device to its datum position and, without shock or vibration, increase the force from F_0 to F_{Λ}

The duration of the additional test force F_1 shall be not less than 3 s and not greater than 5 s.

The final reading shall be made immediately after the additional test force has been removed.

https://standards.iteh.ai/catalog/standards/sist Number of indentations

On each standardized block five indentations shall be made uniformly distributed over the entire test surface.

Uniformity of hardness

6

Let e_1 , e_2 , ..., e_5 be the values in scale units of the measured increase in depth of indentation, arranged in increasing order of magnitude.

The non-uniformity of the block under the particular conditions of standardization is characterized by:

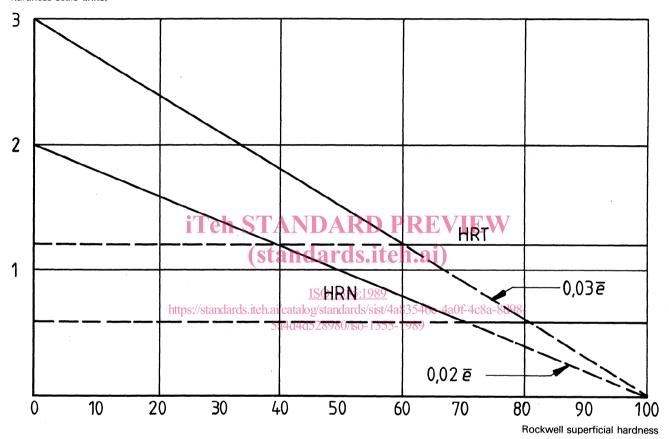
$$e_{5} - e_{1}$$

and expressed in percent of \overline{e} .

where

$$\overline{e} = \frac{e_1 + e_2 + \dots + e_5}{5}$$

- 7.2 The block is not sufficiently uniform in hardness for standardization purposes unless the uniformity satisfies the following conditions:
 - for scales 15N, 30N and 45N, the maximum permissible non-uniformity shall be $0.02\overline{e}$ or 0.6 superficial hardness scale units, whichever is the greater (see annex A).
 - for scales 15T, 30T and 45T, the maximum permissible non-uniformity shall be $0.03\overline{e}$ or 1.2 superficial hardness scale units, whichever is the greater (see annex A).
- ds.8.10 Each sandardized block shall be marked with the following:
- arithmetic mean of the hardness values found in the a) standardizing test; 5a4d4d528980/iso-13
 - name or mark of the supplier:
 - serial number;


Marking/IFW

- name or mark of the standardizing authority:
- thickness of the block or an identifying mark on the test surface:
- year of calibration.
- 8.2 Any mark put on the side of the block shall be upright when the test surface is the upper face.

Annex A (normative)

Uniformity of test blocks

Maximum permissible non-uniformity (Rockwell superficial hardness scale units)

iTeh STANDARD PREVIEW

This page intentionally left blank

ISO 1355:1989 https://standards.iteh.ai/catalog/standards/sist/4a83546e-4a0f-4c8a-8d98-5a4d4d528980/iso-1355-1989

ISO 1355: 1989 (E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 1355:1989 https://standards.iteh.ai/catalog/standards/sist/4a83546e-4a0f-4c8a-8d98-5a4d4d528980/iso-1355-1989

UDC 669: 620.178.152.42.05: 53.089.6

Descriptors: metals, tests, hardness tests, Rockwell hardness, test equipment, blocks, reference sample, calibration, marking.

Price based on 4 pages