SLOVENSKI STANDARD SIST EN 61158-6-9:2015 01-marec-2015 Nadomešča: SIST EN 61158-6-9:2012 Industrijska komunikacijska omrežja - Specifikacije za procesna vodila - 6-9. del: Specifikacija protokola na aplikacijski ravni - Elementi tipa 9 (IEC 61158-6-9:2014) Industrial communication networks - Fieldbus specifications - Part 6-9: Application layer protocol specification - Type 9 elements (IEC 61158-6-9:2014) Industrielle Kommunikationsnetze - Feldbusse - Teil 6-9: Protokollspezifikation des Application Layer (Anwendungsschicht) - Typ 9-Elemente (IEC 61158-6-9:2014) Réseaux de communication industri<u>els : Spécifications</u> des bus de terrain - Partie 6-9: Spécification du protocole de la couche application de Éléments de type 9 (CEI 61158-6-9:2014) Ta slovenski standard je istoveten z: EN 61158-6-9:2014 #### ICS: 25.040.40 Merjenje in krmiljenje Industrial process industrijskih postopkov measurement and control 35.100.70 Uporabniški sloj Application layer 35.110 Omreževanje Networking SIST EN 61158-6-9:2015 en,fr,de SIST EN 61158-6-9:2015 ### iTeh STANDARD PREVIEW (standards.iteh.ai) <u>SIST EN 61158-6-9:2015</u> https://standards.iteh.ai/catalog/standards/sist/3b505465-6dde-4433-b60ccbb3cac4a24a/sist-en-61158-6-9-2015 **EUROPEAN STANDARD** EN 61158-6-9 NORME EUROPÉENNE **EUROPÄISCHE NORM** October 2014 ICS 25.040.40; 35.100.70; 35.110 Supersedes EN 61158-6-9:2012 #### **English Version** # Industrial communication networks - Fieldbus specifications - Part 6-9: Application layer protocol specification - Type 9 elements (IEC 61158-6-9:2014) Réseaux de communication industriels - Spécifications des bus de terrain - Partie 6-9: Spécification du protocole de la couche application - Éléments de type 9 (CEI 61158-6-9:2014) Industrielle Kommunikationsnetze - Feldbusse - Teil 6-9: Protokollspezifikation des Application Layer (Anwendungsschicht) - Typ 9-Elemente (IEC 61158-6-9:2014) This European Standard was approved by CENELEC on 2014-09-23. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. https://standards.iteh.ai/catalog/standards/sist/3b505465-6dde-4433-b60c- CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels #### **Foreword** The text of document 65C/764/FDIS, future edition 3 of IEC 61158-6-9, prepared by SC 65C "Industrial networks" of IEC/TC 65 "Industrial-process measurement, control and automation" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 61158-6-9:2014. The following dates are fixed: - latest date by which the document has to be implemented at (dop) 2015-06-23 national level by publication of an identical national standard or by endorsement - latest date by which the national standards conflicting with (dow) 2017-09-23 the document have to be withdrawn This document supersedes EN 61158-6-9:2012. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights. iTeh STANDARD PREVIEW This document has been prepared under a mandate given to CENELEC by the European Commission and the European Free Trade Association. SIST EN 61158-6-9:2015 https://standards.iteh.ai/catalog/standards/sist/3b505465-6dde-4433-b60c- cbb Endorsement notice 015 The text of the International Standard IEC 61158-6-9:2014 was approved by CENELEC as a European Standard without any modification. In the official version, for Bibliography, the following notes have to be added for the standards indicated: IEC 61784-1 NOTE Harmonized as EN 61784-1. IEC 61784-2 NOTE Harmonized as EN 61784-2. #### Annex ZA (normative) ### Normative references to international publications with their corresponding European publications The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies. NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu. | <u>Publication</u> | <u>Year</u> | <u>Title</u> | EN/HD | <u>Year</u> | |--------------------|---------------|--|-------------------------|-------------| | IEC 61158-1 | iTe | Industrial communication networks - Fieldbus specifications - Part 1: Overview and guidance for the IEC 61158 and IEC 61784 series | EN 61158-1 | - | | IEC 61158-3-1 | - | Industrial communication networks -
Fieldbus specifications -
Part 3-1: Data-link layer service definition -
Type 1 elements 61158-6-9:2015 | EN 61158-3-1 | - | | IEC 61158-4-1 | https://stand | ards. iteh ai/catalog/standards/sist/3b505465-6dde-4433
Industrial communication networks 5
Fieldbus specifications -
Part 4-1: Data-link layer protocol
specification - Type 1 elements | 3-b60c-
EN 61158-4-1 | - | | IEC 61158-5-5 | - | Industrial communication networks - Fieldbus specifications - Part 5-5: Application layer service definition - Type 5 elements | EN 61158-5-5 | - | | IEC 61158-5-9 | - | Industrial communication networks - Fieldbus specifications - Part 5-9: Application layer service definition - Type 9 elements | EN 61158-5-9 | - | | ISO/IEC 646 | - | Information technology - ISO 7-bit coded character set for information interchange | - | - | | ISO/IEC 7498-1 | - | Information technology - Open Systems
Interconnection - Basic Reference Model:
The Basic Model | - | - | | ISO/IEC 8824-1 | - | Information technology - Abstract Syntax
Notation One (ASN.1): Specification of
basic notation | - | - | | <u>Publication</u> | <u>Year</u> | <u>Title</u> | EN/HD | <u>Year</u> | |--------------------|-------------|---|-------|-------------| | ISO/IEC 8825-1 | - | Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) | - | - | | ISO/IEC 9545 | - | Information technology - Open Systems
Interconnection - Application Layer
structure | - | - | | ISO/IEC 10731 | - | Information technology - Open Systems
Interconnection - Basic Reference Model -
Conventions for the definition of OSI
services | - | - | | ISO/IEC/IEEE 60559 | - | Information technology - Microprocessor
Systems - Floating-Point arithmetic | - | - | ## iTeh STANDARD PREVIEW (standards.iteh.ai) SIST EN 61158-6-9:2015 https://standards.iteh.ai/catalog/standards/sist/3b505465-6dde-4433-b60c-cbb3cac4a24a/sist-en-61158-6-9-2015 IEC 61158-6-9 Edition 3.0 2014-08 ### INTERNATIONAL STANDARD ### NORME INTERNATIONALE Industrial communication networks / Fieldbus specifications – Part 6-9: Application layer protocol specification – Type 9 elements Réseaux de communication industriels 58-Spécifications des bus de terrain – Partie 6-9: Spécification du protocole de la couche application – Eléments de type 9 cbb3cac4a24a/sist-en-61158-6-9-2015 INTERNATIONAL ELECTROTECHNICAL COMMISSION COMMISSION ELECTROTECHNIQUE INTERNATIONALE PRICE CODE CODE PRIX ICS 25.040.40; 35.100.70; 35.110 ISBN 978-2-8322-1760-3 Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé. #### CONTENTS | FOI | REWO |)RD | 5 | |------|------------|---|------| | INT | RODI | JCTION | 7 | | 1 | Scop | e | 8 | | | 1.1 | General | 8 | | | 1.2 | Specifications | 8 | | | 1.3 | Conformance | 9 | | 2 | Norm | native references | 9 | | 3 | Term | s, definitions, symbols, abbreviations and conventions | . 10 | | | 3.1 | Terms and definitions from other ISO/IEC standards | .10 | | | 3.2 | IEC 61158-1 terms | . 11 | | | 3.3 | Abbreviations and symbols | | | | 3.4 | Conventions | | | | 3.5 | Conventions used in state machines | | | 4 | Abstr | act syntax | | | | 4.1 | FAL-AR PDU abstract syntax | | | | 4.2 | Abstract syntax of PDUBody | | | | 4.3 | Type definitions for ASEs Abstract syntax of data types DARD PREVIEW | .22 | | _ | 4.4 | | | | 5 | irans | sfer syntax (standards.iteh.ai) | .28 | | 6 | Struc | ture of FAL protocol state machines | . 39 | | 7 | AP-C | context state machinesSIST_EN_61.158-6-9.2015 | | | | 7.1 | VCR PM structure ards.iteh.ai/catalog/standards/sist/3b505465-6dde-4433-b60c- | .40 | | _ | 7.2 | VCR PM state machine b3cac4a24a/sist-en-61158-6-9-2015 | | | 8 | | service protocol machine (FSPM) | | | | 8.1 | General | | | | 8.2 | FSPM state tables | | | | 8.3 | Functions used by FSPM | | | ^ | 8.4 | Parameters of FSPM/ARPM primitives | | | 9 | | cation relationship protocol machines (ARPMs) | | | | | AREP mapping to data-link layer | | | | 9.2 | Application relationship protocol machines (ARPMs) | | | | 9.3
9.4 | AREP state machine primitive definitions | | | 10 | | mapping protocol machine (DMPM) | | | 10 | 10.1 | | | | | . • | DMPM state table | | | | | Primitives exchanged between data-link layer and DMPM | | | | | Functions used by DMPM | | | Bib | | phy | | | | ٠. ح | . , | | | Fig | ure 1 | - Insertion of identification information in the FMS PDU | .29 | | Fig | ure 2 | – Identification | .30 | | Figi | ure 3 | – Coding with identification | .31 | | _ | | – Coding without identification | | | _ | | - Representation of the value true | | | - J | | 1 | | | Figure 6 – Representation of the value false | 31 | |--|----| | Figure 7 – Coding of data of data type Integer16 | 32 | | Figure 8 – Coding of data of data type Unsigned16 | 32 | | Figure 9 – Coding of data of data type Floating Point | 33 | | Figure 10 – Coding of data of data type Visible String | 33 | | Figure 11 – Coding of data of data type Octet String | 34 | | Figure 12 – Coding of data of type Date | 34 | | Figure 13 – Coding of data of data type Time-of-day | 35 | | Figure 14 – Coding of data of data type Time-difference | 36 | | Figure 15 – Coding of data of data type Bit String | 36 | | Figure 16 – Coding of data of data type Time-value | 37 | | Figure 17 – Coding of data of user data definitions with identifier | 37 | | Figure 18 – Coding of data of user data definitions without identifier | 37 | | Figure 19 – Coding of ID info for a SEQUENCE | 38 | | Figure 20 – Relationships among protocol machines and adjacent layers | 39 | | Figure 21 – Relationships among protocol machines and adjacent layers | 40 | | Figure 22 – VCR state machine | 41 | | Figure 23 – State transition diagram of FSPM | 53 | | Figure 23 – State transition diagram of FSPM | 67 | | Figure 25 – State transition diagramof QUB ARPMITCH.ai. | 69 | | Figure 26 – State transition diagram of the BNU ARPM | 77 | | Figure 27 – State transition diagram of DMPM 1158-6-9:2015 https://standards.iieli.a/catalog/standards/sist/3b505465-6dde-4433-b60c- | 85 | | cbb3cac4a24a/sist-en-61158-6-9-2015 | | | Table 1 – Conventions used for state machines | | | Table 2 – Coding for Date type | | | Table 3 – AP-VCR state machine transactions | | | Table 4 – Primitives issued by FAL-User to VCR PM | | | Table 5 – Primitives issued by VCR PM to FAL-User | | | Table 6 – Primitives issued by VCR PM to FSPM | | | Table 7 – Primitives issued by FSPM to VCR PM | | | Table 8 – FSPM state table – sender transactions | | | Table 9 – FSPM state table – receiver transactions | | | Table 10 – Function SelectArep() | | | Table 11 – Parameters used with primitives exchanged between FSPM and ARPM | | | Table 12 – QUU ARPM states | | | Table 13 – QUU ARPM state table – sender transactions | | | Table 14 – QUU ARPM state table – receiver transactions | | | Table 15 – QUB ARPM states | 68 | | Table 16 – QUB ARPM state table – sender transactions | | | Table 17 – QUB ARPM state table – receiver transactions | 71 | | Table 18 – BNU ARPM states | 77 | | Table 19 – BNU ARPM state table – sender transactions | 78 | | Table 20 – BNU ARPM state table – receiver transactions | 79 | - 4 - IEC 61158-6-9:2014 © IEC 2014 | Table 21 – Primitives issued from ARPM to DMPM | 82 | |--|----| | Table 22 – Primitives issued by DMPM to ARPM | 82 | | Table 23 – Parameters used with primitives exchanged between ARPM and DMPM | 82 | | Table 24 – Function GetArepId() | 83 | | Table 25 – Function BuildFAS-PDU | 84 | | Table 26 – Function FAS_Pdu_Type | 84 | | Table 27 – Function AbortIdentifier | 84 | | Table 28 – Function AbortReason | 84 | | Table 29 – Function AbortDetail | 84 | | Table 30 – DMPM state descriptions | 85 | | Table 31 – DMPM state table – sender transactions | 85 | | Table 32 – DMPM state table – receiver transactions | 88 | | Table 33 – Primitives exchanged between data-link layer and DMPM | 91 | | Table 34 – Function PickArep | 93 | | Table 35 – Function FindAREP | 93 | | Table 36 – Function LocateQubArep | 94 | | Table 37 – Function SetIdentifier() | 94 | ## iTeh STANDARD PREVIEW (standards.iteh.ai) SIST EN 61158-6-9:2015 https://standards.iteh.ai/catalog/standards/sist/3b505465-6dde-4433-b60c-cbb3cac4a24a/sist-en-61158-6-9-2015 #### INTERNATIONAL ELECTROTECHNICAL COMMISSION ### INDUSTRIAL COMMUNICATION NETWORKS – FIELDBUS SPECIFICATIONS – ### Part 6-9: Application layer protocol specification – Type 9 elements #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their mational and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - cbb3cac4a24a/sist-en-61158-6-9-2015 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. Attention is drawn to the fact that the use of the associated protocol type is restricted by its intellectual-property-right holders. In all cases, the commitment to limited release of intellectual-property-rights made by the holders of those rights permits a layer protocol type to be used with other layer protocols of the same type, or in other type combinations explicitly authorized by its intellectual-property-right holders. NOTE Combinations of protocol types are specified in IEC 61784-1 and IEC 61784-2. International Standard IEC 61158-6-9 has been prepared by subcommittee 65C: Industrial networks, of IEC technical committee 65: Industrial-process measurement, control and automation. This third edition cancels and replaces the second edition published in 2010. This edition constitutes a technical revision. The main change with respect to the previous edition is listed below: **-** 6 **-** IEC 61158-6-9:2014 © IEC 2014 - Correct Time-difference valid range - Correct Table 3 state transition - Include Transparent timeliness class in BNU AREP formal model The text of this standard is based on the following documents: | FDIS | Report on voting | |--------------|------------------| | 65C/764/FDIS | 65C/774/RVD | Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table. This publication has been drafted in accordance with ISO/IEC Directives, Part 2. A list of all parts of the IEC 61158 series, published under the general title *Industrial communication networks – Fieldbus specifications*, can be found on the IEC web site. The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be: - reconfirmed; - withdrawn: - replaced by a revised edition, prANDARD PREVIEW - amended. (standards.iteh.ai) <u>SIST EN 61158-6-9:2015</u> https://standards.iteh.ai/catalog/standards/sist/3b505465-6dde-4433-b60c-cbb3cac4a24a/sist-en-61158-6-9-2015 IEC 61158-6-9:2014 © IEC 2014 **-7-** #### INTRODUCTION This part of IEC 61158 is one of a series produced to facilitate the interconnection of automation system components. It is related to other standards in the set as defined by the "three-layer" fieldbus reference model described in IEC 61158-1. The application protocol provides the application service by making use of the services available from the data-link or other immediately lower layer. The primary aim of this standard is to provide a set of rules for communication expressed in terms of the procedures to be carried out by peer application entities (AEs) at the time of communication. These rules for communication are intended to provide a sound basis for development in order to serve a variety of purposes: - as a guide for implementors and designers; - for use in the testing and procurement of equipment; - as part of an agreement for the admittance of systems into the open systems environment; - as a refinement to the understanding of time-critical communications within OSI. This standard is concerned, in particular, with the communication and interworking of sensors, effectors and other automation devices. By using this standard together with other standards positioned within the OSI or fieldbus reference models, otherwise incompatible systems may work together in any combination. ## iTeh STANDARD PREVIEW (standards.iteh.ai) <u>SIST EN 61158-6-9:2015</u> https://standards.iteh.ai/catalog/standards/sist/3b505465-6dde-4433-b60c-cbb3cac4a24a/sist-en-61158-6-9-2015 ### INDUSTRIAL COMMUNICATION NETWORKS – FIELDBUS SPECIFICATIONS – ### Part 6-9: Application layer protocol specification – Type 9 elements #### 1 Scope #### 1.1 General The Fieldbus Application Layer (FAL) provides user programs with a means to access the fieldbus communication environment. In this respect, the FAL can be viewed as a "window between corresponding application programs." This standard provides common elements for basic time-critical and non-time-critical messaging communications between application programs in an automation environment and material specific to type 9 fieldbus. The term "time-critical" is used to represent the presence of a time-window, within which one or more specified actions are required to be completed with some defined level of certainty. Failure to complete specified actions within the time window risks failure of the applications requesting the actions, with attendant risk to equipment, plant and possibly human life. DARD PREVIEW This standard defines in an abstract way the externally visible behavior provided by the Type 9 fieldbus Application Layer in terms of - a) the abstract syntax defining the application layer protocol data units conveyed between communicating application entities 14244/sist-en-61158-6-9-2015 - b) the transfer syntax defining the application layer protocol data units conveyed between communicating application entities, - c) the application context state machine defining the application service behavior visible between communicating application entities; and - d) the application relationship state machines defining the communication behavior visible between communicating application entities; and. The purpose of this standard is to define the protocol provided to - 1) define the wire-representation of the service primitives defined in IEC 61158-5-9, and - 2) define the externally visible behavior associated with their transfer. This standard specifies the protocol of the Type 9 IEC fieldbus application layer, in conformance with the OSI Basic Reference Model (ISO/IEC 7498-1) and the OSI Application Layer Structure (ISO/IEC 9545). #### 1.2 Specifications The principal objective of this standard is to specify the syntax and behavior of the application layer protocol that conveys the application layer services defined in IEC 61158-5-9. A secondary objective is to provide migration paths from previously-existing industrial communications protocols. It is this latter objective which gives rise to the diversity of protocols standardized in IEC 61158-6. #### 1.3 Conformance This standard does not specify individual implementations or products, nor does it constrain the implementations of application layer entities within industrial automation systems. Conformance is achieved through implementation of this application layer protocol specification. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE All parts of the IEC 61158 series, as well as IEC 61784-1 and IEC 61784-2 are maintained simultaneously. Cross-references to these documents within the text therefore refer to the editions as dated in this list of normative references. IEC 61158-1, Industrial communication networks – Fieldbus specifications – Part 1: Overview and guidance for the IEC 61158 and IEC 61784 series IEC 61158-3-1, Industrial communication networks – Fieldbus specifications – Part 3-1: Datalink layer service definition – Type 1 elements IEC 61158-4-1, Industrial communication networks – Fieldbus specifications – Part 4-1: Data-link layer protocol specification – Type 1 elements iteh.ai) IEC 61158-5-5, Industrial communication networks — Fieldbus specifications — Part 5-5: Application layer service definition — Type 5 elements 2015 https://standards.iteh.ai/catalog/standards/sist/3b505465-6dde-4433-b60c- IEC 61158-5-9, Industrial communication networks — Fieldbus specifications — Part 5-9: Application layer service definition — Type 9 elements $ISO/IEC\ 646$, Information technology — ISO 7-bit coded character set for information interchange ISO/IEC 7498-1, Information technology – Open Systems Interconnection – Basic Reference Model: The Basic Model ISO/IEC 8824-1, Information technology – Abstract Syntax Notation One (ASN.1): Specification of basic notation ISO/IEC 8825-1, Information technology – ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) ISO/IEC 9545, Information technology – Open Systems Interconnection – Application Layer structure ISO/IEC 10731, Information technology – Open Systems Interconnection – Basic Reference Model – Conventions for the definition of OSI services ISO/IEC/IEEE 60559, Information technology – Microprocessor Systems – Floating-Point arithmetic