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Intellectual Property Rights 

Essential patents  

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
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Trademarks 

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. 
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no 
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does 
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks. 

Foreword 
This Group Report (GR) has been produced by ETSI Industry Specification Group (ISG) Secure AI (SAI). 

Modal verbs terminology 
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be 
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions). 

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. 
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1 Scope 
The present document summarizes and analyses existing and potential mitigation against threats for AI-based systems 
as discussed in ETSI GR SAI 004 [i.1]. The goal is to have a technical survey for mitigating against threats introduced 
by adopting AI into systems. The technical survey shed light on available methods of securing AI-based systems by 
mitigating against known or potential security threats. It also addresses security capabilities, challenges, and limitations 
when adopting mitigation for AI-based systems in certain potential use cases. 

2 References 

2.1 Normative references 
Normative references are not applicable in the present document. 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] ETSI GR SAI 004: "Securing Artificial Intelligence (SAI); Problem Statement". 

[i.2] Doyen Sahoo, Quang Pham, Jing Lu, Steven C. H. Hoi: "Online Deep Learning: Learning Deep 
Neural Networks on the Fly", International Joint Conferences on Artificial Intelligence 
Organization, 2018. 

NOTE: Available at https://doi.org/10.24963/ijcai.2018/369. 

[i.3] Battista Biggio and Fabio Roli: "Wild patterns: Ten years after the rise of adversarial machine 
learning", Pattern Recognition, 2018.  

[i.4] Qiang Liu, Pan Li, Wentao Zhao, Wei Cai, Shui Yu and Victor C. M. Leung: "A Survey on 
Security Threats and Defensive Techniques of Machine Learning: A Data Driving View". IEEE 
Access 2018. 

NOTE: Available at https://doi.org/10.1109/ACCESS.2018.2805680. 

[i.5] Nicolas Papernot, Patrick D. McDaniel, Arunesh Sinha and Michael P. Wellman: "SoK: Security 
and Privacy in Machine Learning". IEEE European Symposium on Security and Privacy 
(EuroS&P) 2018. 

[i.6] Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang and Anil K. Jain: 
"Adversarial Attacks and Defenses in Images, Graphs and Text: A Review". International Journal 
of Automation and Computing volume 17, pages151-178(2020). 

NOTE: Available at https://doi.org/10.1007/s11633-019-1211-x. 

[i.7] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, Debdeep 
Mukhopadhyay: "Adversarial Attacks and Defences: A Survey", arXiv preprint 
arXiv:1810.00069v1. 

NOTE: Available at https://arxiv.org/abs/1810.00069.  
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[i.8] Yingzhe He, Guozhu Meng, Kai Chen, Xingbo Hu, Jinwen He: "Towards Privacy and Security of 
Deep Learning Systems: A Survey". IEEE Transactions on Software Engineering 2020. 

[i.9] NIST IR 8269-(Draft): "A Taxonomy and Terminology of Adversarial Machine Learning". 

NOTE: Available at https://doi.org/10.6028/NIST.IR.8269-draft. 

[i.10] Christian Berghoff1, Matthias Neu1 and Arndt von Twickel: "Vulnerabilities of Connectionist AI 
Applications: Evaluation and Defence", Frontiers in Big Data volume 3, 2020. 

NOTE: Available at https://doi.org/10.3389/fdata.2020.00023. 

[i.11] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D. Joseph, Benjamin I. P. Rubinstein, 
Udam Saini, Charles A. Sutton, J. Doug Tygar, Kai Xia: "Exploiting Machine Learning to Subvert 
Your Spam Filter", Usenix Workshop on Large-Scale Exploits and Emergent Threats (LEET) 
2008. 

[i.12] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, Bo Li: 
"Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression 
Learning", IEEE Symposium on Security and Privacy 2018: 19-35. 

[i.13] Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Jaehoon Amir Safavi: "Mitigating Poisoning 
Attacks on Machine Learning Models: A Data Provenance Based Approach", AISec@CCS 2017: 
103-110. 

NOTE: Available at https://doi.org/10.1145/3128572.3140450. 

[i.14] Sanghyun Hong, Varun Chandrasekaran, Yigitcan Kaya, Tudor Dumitras, Nicolas Papernot: "On 
the Effectiveness of Mitigating Data Poisoning Attacks with Gradient Shaping", arXiv: 
2002.11497v2.  

NOTE: Available at https://arxiv.org/abs/2002.11497v2. 

[i.15] Nitika Khurana, Sudip Mittal, Aritran Piplai, Anupam Joshi: "Preventing Poisoning Attacks On AI 
Based Threat Intelligence Systems", IEEE International Workshop on Machine Learning for 
Signal Processing (MLSP) 2019: 1-6. 

NOTE: Available at https://doi.org/10.1109/MLSP.2019.8918803. 

[i.16] Battista Biggio, Igino Corona, Giorgio Fumera, Giorgio Giacinto, Fabio Roli: "Bagging Classifiers 
for Fighting Poisoning Attacks in Adversarial Classification Tasks", International Workshop on 
Multiple Classifier Systems (MCS) 2011: 350-359. 

NOTE: Available at https://doi.org/10.1007/978-3-642-21557-5_37. 

[i.17] Yao Cheng, Cheng-Kang Chu, Hsiao-Ying Lin, Marius Lombard-Platet, David Naccache: "Keyed 
Non-parametric Hypothesis Tests", International Conference on Network and System Security 
(NSS) 2019: 632-645. 

NOTE: Available at https://doi.org/10.1007/978-3-030-36938-5_39.  

[i.18] Tran, Brandon, Jerry Li, and Aleksander Madry: "Spectral signatures in backdoor attacks", In 
Advances in Neural Information Processing Systems, pp. 8000-8010. 2018. 

[i.19] Chen, Bryant, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung 
Lee, Ian Molloy and Biplav Srivastava: "Detecting backdoor attacks on deep neural networks by 
activation clustering", Artificial Intelligence Safety Workshop @ AAAI, 2019. 

[i.20] Yuntao Liu, Yang Xie, Ankur Srivastava: "Neural Trojans", 2017 IEEE International Conference 
on Computer Design (ICCD), Boston, MA, 2017, pp. 45-48, doi: 10.1109/ICCD.2017.16. 

NOTE: Available at https://doi.org/10.1109/ICCD.2017.16. 
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[i.21] Bingyin Zhao and Yangjie Lao: "Resilience of Pruned Neural Network against poisoning attack", 
International Conferecne on Malicious and Unwanted Software (MALWARE) 2018, page 78-83. 

NOTE: https://doi.org/10.1109/MALWARE.2018.8659362. 

[i.22] Liu, Kang, Brendan Dolan-Gavitt and Siddharth Garg: "Fine-pruning: Defending against 
backdooring attacks on deep neural networks", In International Symposium on Research in 
Attacks, Intrusions and Defenses, pp. 273-294. Springer, Cham, 2018. 
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3 Definition of terms, symbols and abbreviations 

3.1 Terms 
For the purposes of the present document, the following terms apply: 

adversarial examples: carefully crafted samples which mislead a model to give an incorrect prediction 

conferrable adversarial examples: subclass of transferable adversarial examples that exclusively transfer with a target 
label from a source model to its surrogates 

distributional shift: distribution of input data changes over time 

inference attack: attacks launched from deployment stage 

model-agnostic mitigation: mitigations which do not modify the addressed machine learning model 

model enhancement mitigation: mitigations which modify the addressed machine learning model 

training attack: attacks launched from development stage 

transferable adversarial examples: adversarial examples which are crafted for one model but also fool a different 
model with a high probability 

3.2 Symbols 
Void. 
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3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

AE Adversarial Example 
AI Artificial Intelligence 
API Application Interface 
BDP Boundary Differential Privacy 
BIM Basic Iterative Method 
CNN Convolutional Neural Network 
CW Carlini & Wagner (attacks) 
DNN Deep Neural Network 
DP-SGD Differential-Privacy Stochastic Gradient Descent 
FGSM Fast Gradient Sign Method 
GNN Graph Neural Network 
ILSVRC ImageNet Large Scale Visual Recognition Challenge 
IP Intellectual Property 
JPEG Joint Photographic Experts Group 
JSMA Jacobian-based Saliency Map 
KNHT Keyed Non-parametric Hypothesis Tests 
L-BFGS Limited-Memory Broyden–Fletcher–Goldfarb–Shanno (algorithm) 
ML Machine Learning 
MNIST Modified National Institute of Standards and Technology 
MNTD Meta Neural Trojan Detection 
PATE Private Aggregation of Teacher Ensemble 
PCA Principal Component Analysis 
PGD Project Gradient Descent 
PRADA Protecting Against DNN Model Stealing Attacks 
ReLU Rectified Linear Unit 
RNN Recurrent Neural Network 
RONI Reject On Negative Impact 
SAI Securing Artificial Intelligence 
SAT Satisfiability 
SGD Stochastic Gradient Descent 
SMT Satisfiability Modulo Theories 
STRIP STRong Intentional Perturbation 
TRIM Trimmed-based algorithm 
ULP Universal Litmus Pattern 

4 Overview 

4.1 Machine learning models workflow 
Artificial intelligence has been driven by the rapid progress in deep learning and the wide applications of deep learning, 
such as image classification, object detection, speech recognition and language translation. Therefore, the present 
document focuses on deep learning and explores existing mitigations countermeasuring attacks on deep learning. 

A machine learning model workflow is represented in Figure 1. The model life-cycle includes both development and 
deployment stages. The training dataset is the subset of domain data samples used to train the model, and it can be 
obtained from one or multiple data sources, represented in Figure 1 as data supply chain. A pretrained model can be 
used as input to create the target model. At development stage, via the training dataset, the model is trained. The trained 
model is then tested. Pursuant to ETSI GR SAI 004 [i.1], the testing step will include functional test and adversarial 
test. At deployment stage, the trained and tested model is deployed, i.e. becomes the model in operation. Given 
inference input, the model in operation delivers an output. In Figure 1, the dotted lines from the model in operation 
back to the model under development capture the model updates in online learning scenarios [i.2]. Updates can be pairs 
of inference input and user feedback, served as new training data to refine the model. Updates can also be locally-
computed model parameter refinements. These multiple dotted lines between the model under development and the 
model in operation capture the federated learning scenarios, where a global model is distributed among several entities 
and entities provide model updates to refine the global model. 
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