ETS| ES 203 790 V1.3.1 (2021-05)

Methods for TestinE and ?ﬁecification (MTS);

The Testing and' Tes Notation'version 3;
TTCN-3 Language Extensions:©bject-Oriented Features
ETSIT ES 203 790 V1.3.1 (2021-05)

https/standards.iteh.av/catalog/standards/sist/Sd4edb56-51b0-42af-8e5c-
8a5647158e9d/etsi-es-203-790-v1-3-1-2021-05

2 ETSI ES 203 790 V1.3.1 (2021-05)

Reference
RES/MTS-203790v131

Keywords
language, TTCN-3

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B
Association & but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived differencesimcontents/between such.versions and/or in/print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that'the document'may'be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors,inthe present document; please send ydur commentito-aneof the following services:
https://portal-etsi.org/People/Commitee SupportStaff.aspx

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or
other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fithess
for any particular purpose or against infringement of intellectual property rights.

In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not
limited to, the warranties of merchantability, fithess for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2021.
All rights reserved.

ETSI

3 ETSI ES 203 790 V1.3.1 (2021-05)

Contents

INtellectual Property RIGNES.... ..ot b e e e en e ns 5
01 Yo (o ST 5
MoOdal VErDS TEMINOIOQYccteieeiicieee ettt st e e s te s ae e aesbeeaeesbesreentesaeeasessesneensesreeneensessens 5
1 o0 0L SRS 6
2 L= £ 101 S 6
21 NOIMBLIVE FEFEIENCES ... ettt ettt ettt sttt e e e st e beseeebesaeeaeeae e e enteseebesaeebeeneensensesaesbesaessesneeneensens 6
22 INfOrMELIVE FEFEIENCES. ...ttt sttt ettt a et e e e e seeebesaeese e e enseeeseesbesaeeresneeneensens 6
3 Definition of terms, symbols and abbreviations............cccceeeiiieere e e 7
31 LIS (07PN 7
3.2 Y 1210 7
3.3 ADDIEVIBLIONS ...ttt bbbt b bt a et e e e e sh e e b e s bt e he e s e e e e besh e eb e e Rt e Rt et e R et sheebenneenrennen 7
4 Package conformance and COMPELTDIHTITYooerereieeis e 7
5 Package Concepts for the COre LanQUETE.ccveiuiiieieieeie ettt ettt ste e st s seeens 8
5.0 LT 0T SR 8
51 L= LSS S-S = 0 o @ o] <ok 8
510 GBINENEL ...ttt E b b e R R R Rt R e E R e R e R e R e Rt b e e Rt e R e e R e R e be Rt ere e e e e s 8
511 ClBSSES ...ttt bbbt R bR R e R e oA e R e R £ R SR eh £ SR £ e R £ e R e AR e AR e Rt k£ e aeen e e R e R e benaeehe e e ennenes 8
51.1.0 LC T o1 -SSR 8
51.1.1 S 00] 0 L= 0SB O ot e S S 8 U 10
5112 ADStract Classes. . . o L 11
51.1.3 EXternal Classes.........ooflirdurssenmn selh smmermansdlaree s e sen en e simm it deeecenee e eneeseestesaeeaeeneeneeneeneesseseeseesseeneensesenns 11
5114 FINAL ClaSS8S ... e e e 12
5115 (00 U o0 =R RRSR 12
51.1.6 Constructor invocation....Lu Ll L 208 L0 L L LE 0) e 14
5117 Destructborps//standards. iteh. avcatalog/standards/sist/S3d4edh0-21h0:42ak863CA oo eccee e 14
5118 Methods.................8a3647058e9d/etsie5:203:790:v1 23212021205, oo 15
5119 MELNOA INVOCELION ...ttt ettt e bbbt ae et et e b e e e e e besbeeb e e e enneneens 15
5.1.1.10 RV T oSSR 15
51111 BUITT-TN ClBSSES ...ttt b e bbb e b e s bt sheeb e e bt e s e e e et e s besbeebe e e ennennen 16
5.1.1.12 (0] 01 1= SR 16
512 (@ 0] ox £SO PPSPPSN 18
51.20 LT 0T SO RRRSUSR 18
5121 L@ 10T £ g T o OSSR OROTTPETRUTRRO 19
5122 ODJECE REFEIEINCES ...ttt b et b bbbt b e b et b s bbb b nn e ens 19
51.2.3 LU= 1= o= OSSPSR 19
51.24 SEIECE ClaSS-SEAEEMENT.......c.eeeeeee ettt e e st et e besaeeeeeaeese e st eeeeeseeseesneeseeneeneeneens 19
5125 Of -operator (Dynamic Class DiSCrimiNation)coureerereerereeenieseeese e ssese e esees 20
5126 L0 1] o ISP 20
5.1.2.7 L0071 072 oo TS 20
5.1.2.8 (@ o1 o B 1= 0] == S 21
5.1.3 Extensionto ETSI ES 201 873-1, clause 7.1.8 (Presence checking Operators)cccuveveereereeseeeneesnneenns 22
5.2 (= (0] 8 = a0 | 11 oo P 23
520 (CT= 0T o SO PPSPPSN 23
521 Extension to ETS| ES 201 873-1, clause 16.1.0 (FUNCLIONS)ccoveiiinieinerieese et 23
522 Extension to ETS| ES 201 873-1, clause 16.1.3 (External FUNCLIONS)cccoeveineninineneecseee e 24
523 Extension to ETS| ES 201 873-1, clause 16.1.4 (Invoking functions from specific places)...........c.ccoun.... 24
524 Extension to ETS| ES 201 873-1, clause 16.2 (AISLEDS)......cveverieerereeerie ettt 24
525 Extension to ETS| ES 201 873-1, clause 16.3 (TESL CASES) ...veveuerrereeiirierieenie sttt 25
5.2.6 Extensionto ETSI ES 201 873-1, clause 18 (Overview of program statements and operations) 25
5.2.7 Extensionto ETSI ES 201 873-1, clause 19 (Basic program Stalements)ccccceveereerieerieeiesieesiessee e 27
6 TRI EXtensioNS fOr the PaCKAgEcooiieeec et sttt 30
6.1 Extensionsto clause 5.3 of ETSI ES 201 873-5 Data interface..........ccoveieierine i 30
6.2 Extensionsto clause 5.6.3 of ETSI ES 201 873-5 Miscellaneous Operationsccoeeeereneienieniecnesenennes 31

ETSI

4 ETSI ES 203 790 V1.3.1 (2021-05)

6.3 Extensionsto clause 6 of ETSI ES 201 873-5 Java™ language Mapping..........coeeeeereeeeerersesesesssesssesesnssesesens 33
6.4 Extensionsto clause 7 of ETSI ES 201 873-5 ANSI C language Mapping.........cccoeeerereeereneeeresseeseseeneenes 34
6.5 Extensionsto clause 8 of ETSI ES 201 873-5 C++ language MappPing..........coeerereeeruermeersenseesseseeesseseeennes 35
6.6 Extensionsto clause 9 of ETSI ES 201 873-5 C# language MapPiNgc.coeeeeeeruereeeruenmeesiesseeseeseeesseseeeses 36
7 TCl EXtensionS for the PaCKagEccoviiuiie ettt st s e re s ne s 37
7.1 Extensionsto clause 7.2.2.1 of ETSI ES 201 873-6 Abstract TTCN-3 datatypes and values..........c...cee...... 37
7.2 Extensionsto clause 7.2.2 of ETSI ES 201 873-6 Abstract TTCN-3 datatypesand values..........ccccecvvenenee 37
7.3 Extensionsto clause 7.2.2.2.0 of ETSI ES 201 873-6 BaSIC FUIESc.ceieiiiiiriiiieeeeee e 38
7.4 Extensionsto clause 7.2.2.2 of ETSI ES 201 873-6 Abstract TTCN-3 ValUES.......cccoovverierere e 39
75 Extensionsto clause 7.3.4.1 of ETSI ES 201 873-6 Abstract TCI-TL provided.........c.ccccecvineieninecneneenne 40
7.6 Extensionsto clause 8 of ETSI ES 201 873-6 Java™ language Mapping..........coeeeeereeeeerersesisisssesssssessssesenens 44
7.7 Extensionsto clause 9 of ETSI ES 201 873-6 ANSI C language Mapping.........cceoeeerereeerreneeesiesseeseseeneenes 46
7.8 Extensionsto clause 10 of ETS| ES 201 873-6 C++ |anguage Mapping........ccccereereereruermeersenmeessesseesesseneenes 48
7.9 Extensionsto clause 11 of ETS| ES 201 873-6 W3C XML MaPPiNg......ccccoveveeeriineeerenieenieseeesieseeesseseeeens 50
7.10 Extensionsto clause 12 of ETSI ES 201 873-6 C# language MappPingcccceveerreerreeereeeseeseesesseessessessees 52
8 XTRI Extensions for the Package (OPLtiONal)..........couiiriiiierieeee et 54
8.1 Changesto clause 5.6.3 of ETSI ES 201 873-5 Miscellaneous Operations...........ccovcveveereereeeeeieseesieesne e 54
8.2 Extensionsto clause 6 of ETSI ES 201 873-5 Java™ language Mapping.........c.coeeeeereeeeereesisesesssesssssessssesenens 56
8.3 Extensionsto clause 7 of ETSI ES 201 873-5 ANSI C language Mapping.........coeeeeereereeerenmeerieseeeseseeneenes 56
8.4 Extensionsto clause 8 of ETSI ES 201 873-5 C++ language MappPing..........coeerereeeruermeersenseesseseeesseseeennes 57
85 Extensionsto clause 9 of ETSI ES 201 873-5 C# language MapPiNgc.coveeeeeerueneeerenmeessesieeseeseeesseseeeses 57
Annex A (normative): BNF and StatiC SEMAaNTICS......coovririreriesie e 58
A.l EXtensionsto TTCN-3LEIMUNEIS......cccciiiiiiirierieieieeee ettt sttt st na e 58
A.2 Modified TTCN-3 syntax:BNFproductionsh. L. o b b b o e, 59
A.3 Additional TTCN-3 syntax BNF orQQUCTIONS .l fefhsen B v mmctshereseeseeseesessessessessessessessessesssessessessensens 60
Annex B (normative): Standard COlECIONS........ccoieirireres e 62
B.1 TheTTCN3 standard, COllECtiONS MOUUIE.smrresseermseermesereeessonrsessepassnsrssssnsesseensesseseessesseessessesssens 62
B.1.0 LT 07 RSP 62
B.1.1 QI 0L O] = 1o g I =\ 63
B.1.2 QI T T = ST 63
B.1.3 R LT L1 o (IS = 63
B.1.4 THE QUEUE CIBSS ...ttt ettt e et e e e e e e st esaeesaeeateeaeeese e st e e teenteantesneesaeesaeesseenseenteensenneenneenrens 64
B.1.5 The PriorityQUEUE ClESScccuiiieiiicieesteee e see st e st e s e sae e e st e s te e teestees e ssaessaesseeteeneesneesaeesseenseenteenseeneensensnnas 64
B.1.6 THNE SEACK ClLASS..... ettt h et e e bt b s ae bt et e b e b e sb e b e saeene e e e e ee 65
B.1.7 The RINGBUITEN CIESS......uiiieiie ettt sttt s et et e et e s s e s teesteeteeeesaeesaeesaeenseenseensesneenseenrens 65
B.1.8 ISl oS 1Y T Tt S SS 66
B.1.9 TE SEE CLASS. ...ttt b bt bt ekt e b e b e E e b e Rt b e et e b e b e bR nneene e re s 67
B.1.10 THE EXCEPLION ClASS......ccuiitiieteiieiete sttt sttt sttt ettt b et b st b e et b e s e be b e et b e e et b e b et b b et eb e b 67
2 O I 0 To 1 = 0] o - SRS 67
[1S 0] Y PSSP 68

ETSI

5 ETSI ES 203 790 V1.3.1 (2021-05)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETS in respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the
ETSI Web server (https:/ipr.etsi.org/).

Pursuant to the ETSI Directivesincluding the ETSI IPR Policy, no investigation regarding the essentiality of IPRS,
including I PR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETS| Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM 2M ™ logo is atrademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM ® and the GSM doego-are trademarks registeredrand owned by the/GSM Association.

Foreword

ThisETSI Standard (ES) has been produced. by ET.SI. Fechnical CommitteeMethods forFesting and Specification
(MTS).

Theuse of underline (additional text) and strike through (deleted text) highlights the differ ences between base
document and extended documents.

The present document relates to the multi-part standard ETSI ES 201 873 covering the Testing and Test Control
Notation version 3, asidentified in ETSI ES 201 873-1 [1].

Modal verbs terminology

In the present document "shall”, "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" areto beinterpreted as described in clause 3.2 of the ETS| Drafting Rules (Verba forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

6 ETSI ES 203 790 V1.3.1 (2021-05)

1 Scope

The present document defines the support for object-oriented featuresin TTCN-3. TTCN-3 can be used for the
specification of all types of reactive system tests over avariety of communication ports. Typical areas of application are
protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module
testing, testing of OMG CORBA based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can
be used for many other kinds of testing including interoperability, robustness, regression, system and integration testing.
The specification of test suites for physical layer protocols is outside the scope of the present document.

TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as concepts in the
TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or
usages of TTCN-3.

While the design of TTCN-3 package has taken into account the consistency of a combined usage of the core language
with a number of packages, the concrete usages of and guidelines for this package in combination with other packages
is outside the scope of the present document.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (includingany @amendments) applies.

Referenced documents which are not found:to bepublicly-avail ablein the'expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included'in-thisclause- were valid’at the time of publication, ETSI cannot guarantee
their long termvalidity:

The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”.

2] ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics'.

[3] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[4] ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

ETSI

7 ETSI ES 203 790 V1.3.1 (2021-05)
[i.2] ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[i.3] ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML schemawith TTCN-3".

[i.4] ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, theterms givenin ETSI ES 201 873-1 [1], ETSI ES 201 873-4[2], ETS
ES 201 873-5[3] and ETSI ES 201 873-6 [4] apply.

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document;the abbreviations givenin ETS| [ES201 873:1.[1], ETSI ES 201 873-4 [2],
ETSI ES 201 873-5[3] and ETSI ES 201 873-6 [4] apply.

4 Package conformance’ and compatibility

The package presented in the present document'isidentified by 'the package tag:
"TTCN- 3: 2018 Object-Oriented features" -tobeused with modules complying with the present document.

For an implementation claiming to conform to this package version, all features specified in the present document shall
be implemented consistently with the requirements given in the present document and in ETSI ES 201 873-1 [1] and
ETSI ES 201 873-4[2].

The package presented in the present document is compatible to:

. ETSI ES201 873-1[1], version 4.10.1;

ETSI ES201 873-4 [2], version 4.6.1;
e ETSIES201873-5[3], version 4.8.1;
. ETSI ES201 873-6 [4], version 4.9.1;
e ETSIES201873-7[i.1];

e ETSIES201873-8[i.2);

e ETSIES201873-9[i.3];

e ETSIES201873-10[i.4].

If later versions of those parts are available and should be used instead, the compatibility to the package presented in the
present document has to be checked individually.

ETSI

8 ETSI ES 203 790 V1.3.1 (2021-05)

5 Package Concepts for the Core Language

5.0 General

This package defines object-oriented features for TTCN-3, i.e. it extends the TTCN-3 core language (ETSI
ES 201 873-1 [1]) with well-known concepts from obj ect-oriented programming and modelling languages. This
package realizes the following concepts:

. classes (i.e. class definition, scope rules, abstract and external classes, refinement, constructors, destructors,
methods, visibility, and built-in classes);

. objects (i.e. ownership, object references, select class-statement, dynamic class discrimination and casting);
and

. exception handling (i.e. ability to define exception handling for functions, external functions, altsteps and test
cases).

5.1 Classes and Objects

51.0 General

This clause introduces the concepts of class types and their values, called objects as well as the operations allowed to be
applied to these objects.

51.1 Classes

51.1.0 General

Syntactical Structure

[public | private]

type [external] class [@inal | @bstract | @rait]
Identifier [extends O assType {"," ldentifier}]
[runsOnSpec] [systenSpec] [ntcSpec]

“{" {d assMenber} "}"

[finally StatenentBl ock]

Semantic Description

A classis atype where the values are called objects. A class can declare fields (variables, constants, templates, timers,
classes), methods and properties as its members. Each member name inside the class shall be unique, thereis no
overloading. The private and protected fields and methods are only accessible by the methods of the class, while the
public members of the class can be accessed also from behaviour not defined in the class. The private members of the
class can be accessed directly only by members of the classitself. All members which are neither private nor public are
protected and can a so be accessed by members of subclasses.

All fields may be declared without initializer, even const and template fields.

A class can be declared with the @trait modifier. Such aclassis called atrait class. Other classes are called normal
classes. A trait classis an abstract class and can not be instantiated. It also shall only declare methods without function
bodies as members and no constructor.

A normal class can extend at most one other normal class and also any number of trait classes. The extended normal
classis caled the superclass, the extended trait classes are called the supertraits, while the extending classis called the
subclass of al the classesit extends. Trait classes can only extend trait classes but not normal classes. The resulting type
of aclass definition isthe set of object instances of the classitself and all instances of its direct or indirect subclasses. A
subclass is a subtype of its direct and indirect superclasses and supertraits and its object instances are type compatible
with them. If aclass does not explicitly extend another class type, it implicitly extends the root class type obj ect .
Thus, al classes are directly or indirectly extensions of the obj ect class.

ETSI

9 ETSI ES 203 790 V1.3.1 (2021-05)

A classinherits all members of its superclass and its supertraits that it does not override in its own class body. A non-
private non-abstract member from the superclass can always be accessed inside the class body by using the dotted
notation on the keyword super . Non overridden non-private members can be accessed without any dotted notation
before the member name.

A class can have optional runs on, mtc and system clauses. This restricts the type of component context that can create
objects of that class and all methods of this class. If a class does not have one of these clauses, it inheritsit from its
superclass, if the superclass has one. If the superclass has or inherits a runs on, mtc or system clause, the subclass may
declare each of these clauses with a more specific component type than the one inherited. The function members of
classes shall not have runs on, system or mtc classes but inherit them from their surrounding class or its superclasses.

Classes can be used asfield or element types of structured types.
Restrictions
a Void.

b) Passing of object references and structured types containing fields or elements of class type to the create
operation of a component type or afunction started on another component is not allowed.

¢) No subtyping definition is alowed for class types viathe normal subtype definition.

d) Nolocal/global constants or module parameters of class type or structured types containing fields or elements
of classtype are allowed.

€) Classtype cannot be the contained value of an any type value.
f) Thefunctions of aclass shall not have a runs on, mtc or system clause.
g) Therunson type of aclass shall-berunson compatible with the runs ontype of the behaviour creating a class.

h) Therunson type of a class shall 'be runs on-compatible with the runson type of the superclass and the
supertraits.

i) The mtc and system type of, a class shall be mtc and system compatible with the mtc and system types of the
superclass and the supertraits, respectively.

j) Classextension shall not contain cycles such that a class directly or indirectly extends itself.
k) Referenceto aclassshall not occur more than oncein the list of classes being extended.

[) Neither fields not non-abstract methods shall be declared in trait classes.

m) Trait classes shall not define a constructor and shall not define afinally block.

n) A classshall extend at most one normal class.

0) If astructured type contains afield of aclasstype, thistypeis not seen as a data type and its values cannot be
used for encoding or decoding, sending or receiving and neither used as an actual parameter (or part thereof) to
afunction started on another component.

Examples

EXAMPLE 1:

external function newd obal Id() return charstring;

type class @rait Identifiable {
public function @bstract setld(charstring id);
public function @bstract getld() return charstring;

}

type class Myldentifiabled ass extends Identifiable {
create() {
setld(newd obal 1 d());
}

var charstring id;

ETSI

10 ETSI ES 203 790 V1.3.1 (2021-05)

public function setld(charstring id) { this.id :=id}
public function getld() return charstring { returnid }
}
var ldentifiable v_idObj := MyldentifiableC ass.create();

var charstring v_id := v_idObj.getld();

EXAMPLE 2: parallel inheritance

type class @rait A {
function @bstract f();
}

type class @rait B {
function @bstract f();
}

type class C extends A B {
/1 legal, as it inherits A f() and B.f() and they have the sane paraneters and return cl ause
}

type class @rait B2 extends A {
function @bstract f(); // overrides A f()

}

type class C2 extends A, B2 { // legal, as B2 does not clash with A
function f() { ... } // inplements A f() and B2.f()

}

type class C3 extends A {
function f() { ... } // inplenments A f()

}

type class D extends C2, C3'{
I/l illegal, as it only one non-trait class can,be inherited

}

type class E extends A C2 {
/1 legal, but inheriting A is redundant
}

51.1.1 Scope rules

Class constitutes a scope unit. For the uniqueness of identifiers, the rules specified in clause 5.2.2 of ETSI
ES 201 873-1 [1] apply with the following exceptions:

a) ldentifiers from the higher scope can be reused for member declarations. A reference to areused identifier
without a prefix occurring inside a class scope shall be resolved as a reference to the class member. In order to
refer to the declaration on the higher scope, the identifier shall be preceded with a module name and adot (".").

b) Identifiers of member declarations can be reused inside methods for formal parameter and local declarations.
A reference to areused identifier without a prefix occurring inside a class method shall be resolved asa
reference to the formal parameter or local declaration. In order to refer to the member declaration, the
identifier shall be preceded with thet hi s keyword and a dot.

¢) Reusingidentifiers of members of the component type specified in the runs on clause of the class for members
and inside methods for formal parameters and local declarationsis not allowed.

EXAMPLE:

nodul e O assMdul e {
const integer a := 1;

type class Myd ass() {
const integer a := 2;
function doSonething (integer a := 3) {
log(a); // logs 3 (for the default val ue)
log(this.a); // logs 2
l og(d assModule.a); // logs 1

}
function doSonet hi ngEl se () {

log(a); // logs 2
log(this.a); // also logs 2

ETSI

11 ETSI ES 203 790 V1.3.1 (2021-05)

l og(d assModule.a); // logs 1

51.1.2 Abstract classes

A class can be declared as @abstract. In that case, it is allowed that it also declares abstract member functions, abstract
properties or properties with abstract getters or setters who shall be defined by all non-abstract subclasses. An abstract
method function has no function body but can be called in all concrete instances of subclasses of the abstract class
declaring it. Other members of the abstract class or its subclasses may use the abstract functions asif it was concrete
where at runtime the concrete overriding definition will be used.

Abstract getters and setters have no body but the properties containing them can be referenced in al concrete instance
of subclasses of the abstract class declaring them. Other members of the abstract class or its subclasses may reference
abstract properties asif they were concrete. At runtime the concrete overriding definition will always be used.

NOTE 1: Abstract classes are only useful as superclasses of concrete classes.
Restrictions
a) Abstract classes cannot be explicitly instantiated.

b) If aclassthat isnot declared abstract extends an abstract class, all methods, property getters and setters that
have no implementation in the superclass shall be implemented in this class.

NOTE 2: Variables of an abstract class type can only contain references to instances of non-abstract subclasses.

5.1.1.3 External classes

A class may also be declared as external. In that case, it may declare external‘member functions without a function
body. It is allowed to omit the external keyword from these function declarations. External classes can extend
non-external classes but classes not declared as external-shall not-extend from external classes. External classes may
also define other members like hormal' classes. ' Whervinstantiating“an'external-class, the external object being created is
provided by the platform adapter and the'external ‘method callsto the external object are delegated via the platform
adapter to the corresponding method of the external object.

NOTE 1: External classes are away to use object-oriented library functionality in TTCN-3 while still remaining
abstract and independent of actual implementation. Libraries for common constructs like stacks,
collections, tables can be defined or automatic import mechanisms could be provided.

If an object of an external classisinstantiated, it implicitly creates an external object and the internal object hasa
handle to the external one. The reference to the external object is called a handle. When an external method is invoked
on the internal object, the call is delegated to the handle.

NOTE 2: External objects are possibly shared between different parts of the test system. Therefore, racing
conditions and deadlocks have to be avoided by the external implementation.

Restrictions
a Void
b) Void
¢) Void

d) Aninternal class shall not extend an external class

EXAMPLE:

type class @bstract Collection {
function @bstract size() return integer;
/'l internal default inplenentation
function isEnpty() return bool ean {
return size() == 0

}

ETSI

12 ETSI ES 203 790 V1.3.1 (2021-05)

}

type external class Stack extends Col |l ection {
function push(integer v);
function pop() return integer;
function i seEnpty() return boolean; // external inplenentation overrides internal
function size() return integer; // external inplenentation of abstract function}

5114 Final Classes

If aclass shall not be subclassed, it may be declared as @ i nal . Final classes cannot be abstract.

51.15 Constructors

Syntactic Structure

create "(" { Formal Paraneter , }* ")"

[external "(" { Fornal Paraneter , }* ")"]
[":" CassType "(" { Actual Paraneter , }+ ")"]
[StatementBl ock]

Semantic Description
A class may define a constructor called cr eat e.

If no constructor is defined inside a class body, an implicit default constructor is provided where the formal parameters
of the constructor are the parameters of the (implicit or explicit) constructor of the direct superclass and one additional
formal i n parameter for each declared var and var template field or automatic property of the classitself unless they
are declared with the @ nt er.nal modifier.and also al const_or t enpl at e fieldswith no initializer in their order
of declaration with the same type as in the declaration. If/avar or'var template field-has’an initializer, the additional
formal in parameter created for it, for the implicit constructar, shall have the initializer value as the default value of the
formal parameter.

NOTE 1. Having adefault value in the implicit constructor for the var and var template fields with initializer,
makes it possible to skip that parameter when invoking, the implicit constructor, or to override it with
another value if explicitly_provided.

The constructor is invoked on atype reference to the class and the result of thisinvocation is a new instance object of
the constructor's specific class. If aclassis extending another class with a constructor with at least one parameter
without default, that constructor shall be invoked by adding a super-constructor clause to the constructor declaration.
The super-constructor clause consist of a reference to the class being extended and an actual parameter list. Animplicit
constructor will automatically pass the required actual parametersto the constructor of its superclass.

In the constructor, it is allowed to refer to the object being constructed ast hi s to reference the fields of the object to
be created in case that the names of the formal parameters clash with the names of those fields. They are explicitly
allowed to have the same names as class members.

When an object is created via the invocation of a constructor, the fields of each class body in the class hierarchy that
have initializers are initialized before the execution of that class body's constructor body. The fields of a superclass that
have initializers are initialized before the fields of the subclass. Also, the constructor of the superclassis executed
before the constructor body of the subclass. Thus, it is ensured that all initialization of the superclass hierarchy as well
aslocal fields with initializers is finished before the execution of a constructor body.

Since the members of a class body can appear in any order and forward references are allowed between them, afield
with aninitializer which is referenced by the initializer of another field, isinitialized first.

Asthe underlying external constructor of external classes might need additional parameters, these can be provided via
the additional external formal parameter list. If no internal constructor needs to be defined, the constructor may be
defined without external formal parameter list and no body. In that case, the formal parameter list defines the formal
parameters passed to the external constructor.

Restrictions

a) All formal parameters of the constructor shall bei n parameters.

ETSI

13 ETSI ES 203 790 V1.3.1 (2021-05)
b) The constructor body shall not assign anything to variables that are not local to the constructor body or
accessible fields of the class the constructor belongs to.
¢) The constructor body shall not use blocking operations.
d) Theinitialization of a member field shall not invoke any member function in the object being initialized.
€) The constructor body shall not invoke any member function in the object being initialized.

f) A member constant or template shall be initialized exactly once, either by itsinitialization part or by at most
one constructor body.

g) Direct orindirect cyclicinitialization is not allowed. That isthe initializer of afield shall not use the same field
directly or indirectly.

h) Theinitializer of afield shall not use afield that does not have an initializer.

EXAMPLE 1:

type class Myd ass {

}

var integer a;

const float b;

const float c := 7,

tenplate float nmyTenplate := ?2;

/1 inmplicit constructor:

/1 only using variable fields and non-variable fields with no initializer
/lcreate(integer a, float b) { // no paraneter for c and nyTenpl ate

/1 this.a := a;
/!l this.b :=b
11}

type class Myd ass2 extends MyCd ass {

}

tenpl ate integer t;

/1 explicit constructor

create(tenplate integer t) : MyCass(2, 0.5) {
this.t :=1t;

}

type class Myd ass3 extends Myd ass {

var float f;

/1 inmplicit constructor:

/] create(integer a, float b, float f) : M dass(a, b) {
11 this.f :=f;

I}

EXAMPLE 2:

For each initialization statement it is marked with itsinitialization order in the comment.

type class MySuperd ass {

}

var integer a :=5; // 1

const float b;

create(integer a, float b) {
this.a:=a; // 3
this.b :=b; // 4

type class MySubd ass extends MySuperd ass {

var tenplate integer t :=7?; /] 2

create(tenplate integer t) : M/SuperC ass(2, 0.5) {
this.t :=t; /] 5

}

EXAMPLE 3:

type class MySuperd ass

var integer a := 1,

var float b;

[/ inplicit constructor:

/1 only using variable fields with and without initializer

ETSI

14 ETSI ES 203 790 V1.3.1 (2021-05)

/lcreate(integer a := 1, float b) {
/1l this.a := a;
/1 this.b :=b

11}
}
type class MySubd assWthDefault extends MySuperd ass {
var float f := 1.0;
/1 inmplicit constructor:
/] create(integer a := 1, float b, float f := 1.0) : M/SuperC ass(a, b) {
/1 this.f :=f;
1}
}
5.1.1.6 Constructor invocation

Syntactic Structure

Cl assReference "." create [Actual ParList] [external Actual ParlList]
Semantic Description

To instantiate on object, the constructor of the classisinvoked. The result of that operation is a reference to a newly
constructed of the given concrete class.

If the constructor is a constructor of an external class that has an external formal parameter list, an additional external
actual parameter list is given following the external keyword. If the constructor is to be invoked with a parameter list
with no actual parameters, then the whole actual parameter list may be omitted.

If the constructor of an external classisinvoked, first the external object is created using the given external formal
parameters, then the internal constructor ‘is evaluated tojinitialize the internal part/of-the'object.

EXAMPLE:

type class Naned {
var charstring nang;
}

type external class Address extends/Named)
create(charstring nane)
external (charstring host, int portNr)
Named(nane) {}

}

type external class UnnamedAddress {
create (charstring host, int portNr);
}

var Address v_addr := Address.create("Connection 1") external ("127.0.0.1", 555);
var UnnanedAddress := UnnanedAddress. create("127.0.0.1", 555);
var Stack v_stack := Stack.create; // only inplicit external constructor without paraneters

/1 calling inplicit constructor with default val ues

var MySubC assWthDefault v_nysubl := MySubC assWthDefault.create(1l, 1.0, 1.0);
var MySubd assWthDefault v_nysub2 := MySubd assWthDefault.create(1l, 1.0);

var MySubd assWthDefault v_nysub3 := MySubd assWthDefault.create(b := 1.0);

5.1.1.7 Destructors
Syntactic Structure

finally StatenentBl ock
Semantic Description

A destructor may be provided using afinally declaration following the class body. This destructor will be invoked
automatically at the latest before the system deall ocates an object instance (which istool specific and out of the scope of
the present document) or when the owning component is terminates. The StatementBlock has access to al members
accessible to the class. The StatementBlock is semantically afunction body of a function without return clause.

ETSI

15 ETSI ES 203 790 V1.3.1 (2021-05)

When deallocating the object instance, the destructor of the associated classis invoked first, followed by the destructor
of all parent classesin the reverse order of superclass hierarchy.

51.1.8 Methods

A method is afunction defined inside the class body. It has the same properties and restrictions as any normal function,
but it isinvoked in an object which can be referred to by thet hi s object reference. A method invocation can access
the class's own fields and also the inherited protected fields and methods of its superclasses.

A method inherited from a superclass can be overridden by the subclass by redefining a function of the same name and
with the same formal parameter list. When a method is called in an object, the version of the most specific class of the
super class hierarchy of the concrete class that defines the method in its body will be invoked. The overridden method
can be invoked from the overriding class by using the keyword super asthe object reference of the invocation. If a
method shall not be overridden by any subclass, it can be declared as @ i nal .

Public methods, if not overridden by the subclass, are inherited from the superclasses. If a public method is declared in
aclass, it can beinvoked also in all objects of itsdirect or indirect subclasses.

If apublic method is overridden, the overriding method shall have the same formal parametersin the same order as the
overridden method. Public methods shall be overridden only by public methods. Protected methods may be overridden
by public or protected methods.

The return type of an overriding function shall be the same as the return type of the overridden function with the same
template restrictions and modifiers.

Methods shall have nor uns on, syst emor nt ¢ clause directly attached to them. However, they inherit these
clauses from their surrounding class.

5.1.19 Method invocation

Syntactical Structure

[(Ohjectlnstance | "super") "."] ldentifier, (" FunctionActual ParList ")"
A method invocation is afunction call associated with-acertain object defined in'the class of that object.

Methods are invoked using the dotted notation on an object reference. Inside the scope of a class, methods of the same
class or any visible inherited methods can be invoked without the Objectlnstance prefix if the object the method shall be
invoked in isthe same object as the one invoking it. The usual restrictions on actual parameters, as well as runs on, mtc
and system types apply also on method invocations. All other restrictions that apply to called functions also apply to
method invocation.

The super keyword shall only be used from inside a class member definition to access one of the accessible methods
inherited from the super class of the member's containing class.

51.1.10 Visibility

Fields can be declared as private or protected. Methods can be declared as private, public or protected. If no visibility is
given then the default modifier protected is assumed.

Private member functions are not visible and can be present in multiple classes of the same hierarchy with different
parameter lists and return values.

Public member functions can be called from any behaviour running on the object's owner component.
Restrictions

a) A field of any visibility cannot be overridden by a subclass.

b) A public member function can only be overridden by another public member function.

c) Private members can only be accessed directly from inside their surrounding class's scope.

ETSI

	šöã�¯;[Rwø>FîM…4ü¼hÚ¥íŸÍî�˚íñâaîãM-°3�¾5´¦µž!0¶yÎ™ý!B"¹x˘ßøvø��œˆ¸|˘ı‡b¤%›�«l#˜�ë�~a³O²Ç«üãw�vÿ!g½‡M�k¨¨ø»QÈnóÄOXž
…R•˝k½\@>Áírâà–hO|?ˇp

