INTERNATIONAL STANDARD

Small craft — Fire-resistant fuel hoses

Petits navires - Tuyaux souples pour carburant résistants au feu

iTeh STANDARD PREVIEW (standards.iteh.ai)

Reference number ISO 7840:2013(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 7840:2013

https://standards.iteh.ai/catalog/standards/sist/364badf0-2af6-43da-8d26-0c2b0fd72abc/iso-7840-2013

COPYRIGHT PROTECTED DOCUMENT
(C) ISO 2013

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale $56 \cdot \mathrm{CH}-1211$ Geneva 20
Tel. + 41227490111
Fax + 41227490947
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

Contents

Foreword iv
1 Scope 1
2 Normative references 1
3 General requirements 1
4 Nominal bore 1
$5 \quad$ Physical tests on finished hose 2
5.1 General 2
5.2 Test liquids 2
5.3 Bursting pressure 2
5.4 Vacuum-collapse test 3
5.5 Volume change in test liquids 3
5.6 Mass reduction of test hose 3
5.7 Fire resistance 3
5.8 Effect of ozone 3
5.9 Fuel permeation 3
5.10 Cold-flex test 4
5.11 Abrasion test - 38 mm and larger fuel-fill hose with helical wire embedded reinforcement 4
5.12 Dry heat resistance 4
 4
5.14 Adhesion test 4
6 Marking 4
Annex A (normative) Fire test 6
Annex B (normative) Fuel permeation test for equivalent test method). 8
Bibliography 10

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. www.iso.org/patents

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

The committee responsible for this document is ISO/TC 188, Small craft.
This fourth edition cancels and replaces the third edition (ISO 7840:2004), which has been technically revised, mainly concerning test liquids in 5.2 to coyer hosest long-term resistance to petrol fuel mixed with ethanol as well as diesel fuel mixed with Fatty Acid Methyl Esters (FAME).

ISO 7840:2013
https://standards.iteh.ai/catalog/standards/sist/364badf0-2af6-43da-8d26-0c2b0fd72abc/iso-7840-2013

Small craft - Fire-resistant fuel hoses

1 Scope

This International Standard specifies general requirements and physical tests for fire-resistant hoses for conveying petrol or petrol blended with ethanol and diesel fuel or diesel fuel blended with FAME, designed for a working pressure not exceeding $0,34 \mathrm{MPa}$ for hoses with nominal bore up to and including 10 mm and $0,25 \mathrm{MPa}$ for hoses up to 63 mm inner diameter in craft of hull length up to 24 m .

It applies to hoses for small craft with permanently installed fuel systems. It does not apply to hoses entirely within the splash well at the stern of the craft connected directly to an outboard engine.

Specifications for non-fire-resistant fuel hoses are given in ISO 8469[1]. Specifications for permanently installed fuel systems are given in ISO 10088.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 3:1973, Preferred numbers - Series of preferred numbers
ISO 1307, Rubber and plastics hoses - Hose sizes, minimum and maximum inside diameters, and tolerances on cut-to-length hoses

ISO 7840:2013
ISO 1402, Rubber and plastics hos es and hose assemblies 64bHydrostatic testing
ISO 1817:2011, Rubber, vulcanized or thermoplastic - Determination of the effect of liquids
ISO 7233:2006, Rubber and plastics hoses and hose assemblies - Determination of resistance to vacuum
ISO 7326:2006, Rubber and plastics hoses - Assessment of ozone resistance under static conditions
ISO 10088:-1), Small craft - Permanently installed fuel systems
EN 14214:2008+Amd.1:2009, Automotive fuels - Fatty acid methyl esters (FAME) for diesel engines Requirements and test methods

3 General requirements

Hoses complying with this International Standard shall present a non-porous, smooth inner surface, free from defects and chemical contaminants.

Hoses shall demonstrate suitability for marine use by complying with the requirements of the tests in Clause 5. They shall be marked according to Clause 6 .

4 Nominal bore

Table 1 gives some of the inner diameters based on series R 10 of ISO 3:1973. Tolerances shall conform to ISO 1307 or the values given in Table 1 .

1) To be published.

Table 1 - Inner diameters and tolerances

Dimensions in millimetres	
Inner diameter, d	Tolerance
3,2	
4	$\pm 0,5$
5	
6,3	
7	
8	
9,5	
10	$\pm 0,75$
12,5	
16	
19	
20	
25	
31,5	$\pm 1,25$
iTell ${ }^{38}$ \%TNDAPD PREVIE	
40	
63	

https://standards. iteh.ai/catalog/standards/sist/364badf0-2af6-43da-8d26-

5 Physical tests on finished hose ${ }^{\text {0c2b0fd72abc/iso-7840-2013 }}$

5.1 General

New samples shall be used for each of the tests below.

5.2 Test liquids

a) Petrol:

1) by volume 100 \% liquid 2 specified in ISO 1817:2011, Table A.2;

AND
2) a mixture of by volume 90% of liquid 2 specified in ISO 1817:2011, Table A.2, and 10% by volume of ethanol.
b) Diesel:

1) a mixture of by volume 90% liquid F specified in ISO $1817: 2011$ and 10% by volume of Fatty Acid Methyl Esters (FAME), specified in EN 14214:2008+Amd.1:2009.

5.3 Bursting pressure

For each test liquid as specified in 5.2 , fill three hoses or sample lengths from the hoses and store them for 40 days in air at a temperature of $40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$.

Empty the liquid out and fill the hoses or sample lengths with cold water; subject them to hydrostatic pressure as specified in ISO 1402.

The bursting pressure shall be at least 1,4 MPa for hoses with an inner diameter of 10 mm or less and $1,00 \mathrm{MPa}$ for hoses with an inner diameter of more than 10 mm .

5.4 Vacuum-collapse test

Carry out the test in accordance with ISO 7233:2006, method A, using the test conditions specified in Table 2.
Table 2 - Pressure conditions for the vacuum collapse test

Inner diameter, d mm	Vacuum kPa
$d \leq 10$	80
$10<d \leq 25$	35
$d>25$	No test required

The test duration shall be 60 s and the diameter of the sphere $0,8 d$ (inner diameter of the hose). The sphere shall pass freely through the hose while under vacuum.

5.5 Volume change in test liquids

Determine the changein volume of the hose (tube and cover) by the procedure described in ISO 1817.
Place the test pieces in test liquidsásspecified ins. $\mathbf{2 d}^{2}$ atatemperature of $40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ for 40 days.
If the hose is made of a homogeneous compound (with or without reinforcement), the swelling shall not exceed 35% by volume, as measured by displacement in water. For hose with an inner layer of fuelresistant material and a cover of and ther materiaf, mainly intended for weather and ozone resistance, the increase in volume shall not exceed 35% for the tube and 120% for the cover.

5.6 Mass reduction of test hose

Determine the reduction in mass of the inner layer by the procedure described in ISO 1817. Fill three hoses or submerge test pieces from the hoses with test liquids, as specified in 5.2, and store them for 40 days in air at a temperature of $40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$.

The reduction in mass of the inner layer shall not exceed 8% of the initial mass of the test pieces.
NOTE A reduction in mass of 8% corresponds to a decrease in volume of approximately 10%.

5.7 Fire resistance

Test the hose in accordance with the method described in Annex A.

5.8 Effect of ozone

The hose shall be tested as described in ISO 7326:2006, Method 1. The sample shall show no visible cracks at $\times 7$ magnification.

5.9 Fuel permeation

The permeation rate for the hoses shall be determined according to the method specified in $\underline{\text { Annex } B}$ or an equivalent test method. The hoses shall be classified in the following way and marked in accordance with Clause 6:

Type 1: hoses with a permeation rate of $100 \mathrm{~g} / \mathrm{m}^{2}$ or less per 24 h .

Type 2: hoses with a permeation rate of over $100 \mathrm{~g} / \mathrm{m}^{2}$ per 24 h , up to and including $300 \mathrm{~g} / \mathrm{m}^{2}$ per 24 h .

5.10 Cold-flex test

For straight hoses of 19 mm inside diameter and less, condition three hose samples for 5 h at $-20^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. Flex in the cold chamber through 180° from the centreline to a diameter of 10 times the maximum outside diameter of the hose. The flexing shall take place within 4 s and the hose shall not fracture or show any cracks, checks or break in the tube or cover.

For straight hoses larger than 19 mm inside diameter and all pre-formed hoses, prepare three samples $(100 \pm 5) \mathrm{mm} \times(6 \pm 1) \mathrm{mm}$ from the whole hose wall and condition them for 5 h at $-20^{\circ} \mathrm{C} \pm 2{ }^{\circ} \mathrm{C}$ in an unrestrained loop, positioned between two jaws 50 mm wide and 64 mm apart. While in the cold chamber, bring the jaws together rapidly until they are 25 mm apart. The samples shall not fracture or show any cracks, checks or breaks.

5.11 Abrasion test - 38 mm and larger fuel-fill hose with helical wire embedded reinforcement

Hose samples of 38 mm inner diameter shall be selected for the test. Larger bore hose sizes to be qualified by the test shall not have a cover thickness or construction less than those of the test samples.

Three identical 38 mm bore hose samples shall be tested. Condition hose for at least 24 h at $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and $50 \% \pm 5 \%$ relative humidity. The test hose shall be mandrel- (core-) supported and rotated at a constant speed of $80 \mathrm{r} / \mathrm{min} \pm 2 \mathrm{r} / \mathrm{min}$. Subject hose to a laterally moving abrasive surface, i.e. 80 grit aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ emery cloth, parallel to the longitudipal axis of the hose. The abrasive surface shall be $(25 \pm 5) \mathrm{mm} \times(75 \pm 5) \mathrm{mm}$ affixed to a hard surface which will cycle back and forth $75 \mathrm{~mm} \pm 5 \mathrm{~mm}$ in each direction while loaded with a constantinornalforce be45 N世+5 N . One test cycle shall equal one 360° rotation of the outside diameter of the hose and one back and forth movement of the abrasive surface. After 1000 cycles, the three test samples shall have no helical wire reinforcement exposed at the point of contact with the abrasive surface 0c2b0fd72abc/iso-7840-2013

5.12 Dry heat resistance

After heat ageing for 70 h at $100^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, samples taken from the cover material shall not have a reduction in tensile strength of more than 20% of the tested value or a reduction in elongation at break of more than 50%.

5.13 Oil resistance test

After 70 h immersion in reference oil ISO 1817:2011, oil number 3 at $100^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, samples taken from the tube shall not have a reduction of tensile strength or elongation at break exceeding 40%, or a volumetric change outside the range of -5% to $+25 \%$ of the pre-immersion values. Samples taken from the cover material shall not have a volumetric change outside the range of 0% to $+100 \%$.

5.14 Adhesion test

The force required to separate a 25 mm width sample of bonded adjacent layers, such as the tube and cover of hose material, by tensile force on partially separated layers applied in opposite directions, at $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, shall be not less than 27 N .

6 Marking

To comply with this International Standard, a hose shall be marked at least every $0,3 \mathrm{~m}$ with the following:

- the name or trademark of the manufacturer or supplier;
- the last two figures of the year of manufacture;
- the inner diameter, in millimetres;
- "ISO 7840-A1" or "ISO 7840-A2".
- E10/B10 compatible

NOTE 1 " A " is used to designate a fire-resistant type of fuel hose. " 1 " is used to designate a fuel hose with a fuel permeation rate of $100 \mathrm{~g} / \mathrm{m}^{2}$ or less per 24 h . " 2 " is used to designate a fuel hose with a fuel permeation rate of $300 \mathrm{~g} / \mathrm{m}^{2}$ or less per 24 h .

NOTE 2 "E10" is used to designate a fuel hose resistant to petrol blended with 10% ethanol and "B10" is used to designate a fuel hose resistant to diesel blended with 10 \% FAME.

The marking shall be in letters and figures at least 3 mm high and shall withstand washing with ordinary detergents.

Additional information may be included in the marking.

iTeh STANDARD PREVIEW (standards.iteh.ai)

