# INTERNATIONAL STANDARD

# ISO 22007-6

First edition 2014-06-01

# Plastics — Determination of thermal conductivity and thermal diffusivity —

# Part 6:

Comparative method for low thermal conductivities using a temperature-modulation technique iTeh STANDARD PREVIEW

S Plastiques — Détermination de la conductivité thermique et de la diffusivité thermique —

Partie 6; <u>Méthode</u> comparative pour faibles conductivités thermiques https://standards.iteh.utilisant.une.technique.de.modulation.de.la température a6f48ab16897/iso-22007-6-2014



# iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 22007-6:2014 https://standards.iteh.ai/catalog/standards/sist/276400c1-efca-4b7c-8ec6-a6f48ab16897/iso-22007-6-2014



### COPYRIGHT PROTECTED DOCUMENT

© ISO 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

| Co           | ntents                                                                                                                                                           | Page        |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Fore         | eword                                                                                                                                                            | iv          |
| Introduction |                                                                                                                                                                  | v           |
| 1            | Scope                                                                                                                                                            | 1           |
| 2            | Normative references                                                                                                                                             | 1           |
| 3            | Terms and definitions                                                                                                                                            | 2           |
| 4            | Principle                                                                                                                                                        | 3           |
| 5            | Apparatus                                                                                                                                                        | 4           |
| 6            | Test specimens 6.1 Measuring temperature 6.2 Geometry of the probe material 6.3 Specimen area size 6.4 Specimen thickness                                        | 5<br>5<br>6 |
| 7            | Procedure                                                                                                                                                        | 6           |
| 8            | Expression of results 8.1 Graphical presentation 8.2 Verification                                                                                                | 6           |
| 9            | Test report                                                                                                                                                      | 7           |
| Ann          | Test report Teh STANDARD PREVIEW  nex A (informative) Results of thermal conductivity of cellular plastics  nex B (informative) Infinite thickness ards.iteh.ai) | 9           |
| Ann          | nex B (informative) Infinite thickness dards. Iteh. a1)                                                                                                          | 11          |
|              | liography <u>1SO 22007-6:2014</u>                                                                                                                                |             |

https://standards.iteh.ai/catalog/standards/sist/276400c1-efca-4b7c-8ec6-a6f48ab16897/iso-22007-6-2014

### **Foreword**

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 61, *Plastics*, Subcommittee SC 5, *Physical-chemical properties*.

ISO 22007-6:2014

ISO 22007 consists of the following parts, ainder the general zitcle Plastics 457 Determination of thermal conductivity and thermal diffusivity:

a6f48ab16897/iso-22007-6-2014

- Part 1: General principles
- Part 2: Transient plane heat source (hot disc) method
- Part 3: Temperature wave analysis method
- Part 4: Laser flash method
- Part 5: Results of interlaboratory testing of poly(methyl methacrylate) samples [Technical Report]
- Part 6: Comparative method for low thermal conductivities using a temperature-modulation technique

### Introduction

Thermal insulating properties have become more important in view of power-saving technology. The method which is applicable to measure the lower thermal conductivity in smaller scale with a small amount of a specimen, such as a tray for food, a thermal printing film, a gelled sheet for the electric parts inside laptop PC, an adhesive paste, etc., is required for the micro-scale thermal design of plastics. A double-sensor system of high-sensitivity thermopile located in the different distances in the modulated temperature field, which is controlled by the Peltier thermo-module, is proposed for the determination of thermal conductivity of plastics. A decay parameter is utilized to determine the thermal conductivity of the sample. This method is applied to the measurement of low thermal conductivity in the range below 1,0 W/mK.

In contrast to a pulse or a transient method, high sensitivity and high-temperature resolution are characteristic of temperature modulated technique, in which employment of a lock-in amplifier reduces any influence of noise and interference.

The thermal conductivity of materials that are poor conductors of heat is usually determined by measuring the larger temperature gradients in the sample produced by a steady flow of heat in one-dimensional geometry. In order to reduce the errors of radiation and convection, it often requires large, precisely shaped samples and extreme care to be used successfully.

This part of ISO 22007 specifies a modulated temperature method to determine the thermal conductivity with a small temperature variation, minimizing the influence of radiation and convection.

# iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 22007-6:2014 https://standards.iteh.ai/catalog/standards/sist/276400c1-efca-4b7c-8ec6-a6f48ab16897/iso-22007-6-2014

# iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 22007-6:2014

https://standards.iteh.ai/catalog/standards/sist/276400c1-efca-4b7c-8ec6-a6f48ab16897/iso-22007-6-2014

# Plastics — Determination of thermal conductivity and thermal diffusivity —

# Part 6:

# Comparative method for low thermal conductivities using a temperature-modulation technique

## 1 Scope

This part of ISO 22007 specifies a modulated temperature method realizing the measurement of thermal conductivity. An input of temperature deviation is less than 1 K, and a double lock-in method is applied to amplify the small temperature modulation.

ISO 22007-3 specifies one of the modulated temperature methods where the phase shift is measured in the thermally thick condition, kd >> 1 [ $k = (\omega/2\alpha)^{1/2}$ ,  $\omega$ : angular frequency of temperature wave,  $\alpha$ : thermal diffusivity, and d: thickness of the specimen]. In this condition, the backing material does not affect on the phase shift results on the sensor, on which temperature wave decays exponentially.

On the other hand, if  $kd \ll 1$ , the decay of temperature modulation is influenced by the backing materials. Based on this principle, this part of ISO 22007 specifies the method to determine the thermal conductivity of the sample (as a backing material), comparing the decay of temperature wave detected on both surfaces of the probe material.

Thermal conductivity is determined from the correlation between the thermal impedance and the decay ratio of amplitude using two reference materials measured at the same frequency and temperature.

The covering thermal conductivity range is adjusted with the reference materials and the probe materials. Basically, thermal conductivity is determined in the range from 0,026 W/mK to 0,6 W/mK.

In the case applying the method to inhomogeneous materials, cares must be taken to choose the appropriate measurement conditions in accordance with the thermal penetration depth.

#### 2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 472, Plastics — Vocabulary

ISO 22007-1, Plastics — Determination of thermal conductivity and thermal diffusivity — Part 1: General principles

ISO 22007-3, Plastics — Determination of thermal conductivity and thermal diffusivity — Part 3: Temperature wave analysis method

ISO/TR 22007-5, Plastics — Determination of thermal conductivity and thermal diffusivity — Part 5: Results of interlaboratory testing of poly(methyl methacrylate) samples

ISO 80000-5, Quantities and units — Part 5: Thermodynamics

#### Terms and definitions 3

For the purposes of this document, the terms and definitions given in ISO 472, ISO 22007-1, ISO 22007-3, ISO 80000-5, and the following apply.

#### 3.1

#### amplitude of temperature modulation

amplitude of the temperature oscillation produced by a modulated-power heat source

Note 1 to entry: It is expressed in Kelvin.

## 3.2

## gain

ratio of *Amp* at x = d to x = 0; amplitude ratio of the front (x = 0) and rear (x = d) surfaces of the probe material

$$\zeta = \frac{T_d}{T_0} = \frac{Amp_{x=d}}{Amp_{x=0}}$$

where

 $T_0$  and  $T_d$  are the amplitude of modulated temperature measured on the sensor 1 (at x = 0) and the sensor 2 (x = d), respectively. **iTeh STANDARD PREVIEW** 

#### 3.3

# (standards.iteh.ai)

a6f48ab16897/iso-22007-6-2014

thermal penetration depth

periodic oscillations in temperature can only be observed for the depths less than  $D_p$ , defined as

$$D_{\rm p} = 2\pi \sqrt{\frac{2\alpha}{\omega}}$$

where

- is thermal diffusivity; α
- is angular frequency;
- $D_{\rm p}$  is the depth at which the amplitude of the temperature oscillation has been attenuated to 0,19 % as derived from  $\exp\left(-\sqrt{\frac{\omega}{2\alpha}}D_{\rm p}\right) = \exp(-2\pi) \approx 0,0019$ .

Note 1 to entry: The thermal penetration depth is expressed in metres.

## thermal diffusion length

1/k

where

$$k$$
 is defined as  $\sqrt{\frac{\omega}{2\alpha}}$ 

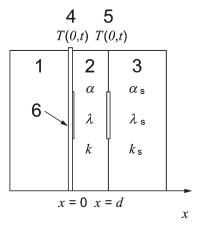
Note 1 to entry: The thermal diffusion length is expressed in metres. k is expressed in reciprocal metres.

### 4 Principle

As depicted in Figure 1, the probe material in a flat sheet shape is set between the heat source and the sample, assuming the one-dimensional heat flow.

The heat source generates a temperature modulation at a constant amplitude, keeping the average temperature constant that is realized by using a thermo-electric type (Peltier type) temperature control. Due to the large heat capacity of the heat sink, the temperature modulation in the heat source is not affected by the sample, and the input temperature (x = 0) on the probe is kept constant.

The sample is attached to the other side of the probe material. In the thermally thin condition,  $kd \ll 1$ , the decaying temperature modulation at x = d is influenced by the sample.


The modulated temperatures at x = 0 and x = d are precisely measured by the attached temperature sensor, respectively, using a lock-in amplification.

The characteristic of the principle is listed as below.

- a) A small temperature change of the modulated temperature, for instance, less than ±1 K, is given at a surrounding temperature. The average temperature is kept at a surrounding temperature, using a thermo-electric type (Peltier-type) temperature control.
- b) The temperature at a bottom of the heat sink (an opposite side from x = 0 in Figure 1), a deep location in the sample (an opposite side from x = d in Figure 1), and the cold-junction of the thermopile sensor, are considered as the surrounding temperature.
- c) A one-dimensional heat flow is attained, measuring a small area located in the centre of the plane heat flow.

  (standards.iteh.ai)
- d) The frequency for the measurement is chosen considering the thermal diffusion length of a probe material.

  ISO 22007-6:2014
- e) The lock-in amplification, that is characteristic of the modulation technique, enables to measure the small temperature variation that minimizes the influence of the radiation and convection.



#### Kev

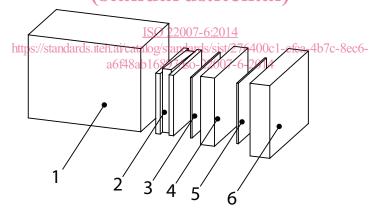
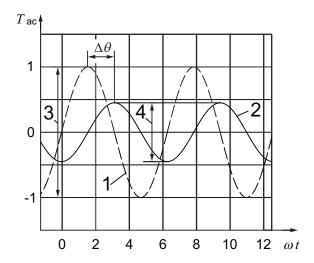

- 1 heat sink
- 2 probe material
- 3 sample
- 4 sensor 1
- 5 sensor 2
- 6 heater (Peltier module)
- *x* direction of sample thickness

Figure 1 — Geometry of two sensors and one Peltier heat source

### 5 Apparatus

The apparatus shall be designed to obtain the gain as defined in 3.2 and shall consist of the following main components as shown in Figure 2.


- **5.1 Heat sink**, with heat capacity that is so large as to estimate the bottom temperature (on the opposite side from x = 0) at room temperature.
- **5.2** Thermoelectric module and two sensor elements, with the following characteristics.
- **5.2.1** Thermoelectric-module that generates a temperature oscillation by passing alternating current through a Peltier-type heat source attached to the front surface of the probe materials; it is assumed to be located at x = 0 (see Figure 2).
- **5.2.2** Sensor element is a thermopile, of which a cold-junction is attached to the surrounding temperature area and a hot-junction located in the mid area detects the temperature variation by the differential amplification.
- **5.2.3** Sensor elements (sensor 1 and sensor 2) are located at x = 0 and x = d, respectively, in order to measure the amplitude of the temperature oscillation on the front and rear surfaces of the probe material in Figures 2 and 3.
- **5.3 Probe materials**, with thermal properties  $\alpha$ , thermal diffusivity,  $\lambda$ : thermal conductivity, k:  $k = (\omega/2\alpha)^{1/2}$ ,  $\omega$ : angular frequency of temperature wave and thickness, d, is located between the heat source and the sample  $(\alpha_s, \lambda_s, \text{ and } k_s)$ .



#### Kev

- 1 heat sink
- 2 Peltier module
- 3 sensor  $1 \rightarrow lock-in amplifier 1$
- 4 probe materials
- 5 sensor  $2 \rightarrow lock-in amplifier 2$
- 6 sample

Figure 2 — Schematic diagram of the measuring geometry



#### Key

- 1 sensor 1
- 2 sensor 2
- 3 amplitude 1
- 4 amplitude 2

 $T_{ac}$  modulated temperature on a sensor in K

- t time
- $\omega$  angular frequency of temperature wave DARD PREVIEW

# (standards.iteh.ai)

Figure 3 — Schematic view of the temperature modulation observed on sensor 1 and sensor 2

ISO 22007-6:2014

NOTE 1 An example of sensor element is a thermopile with thermoelectric temperature sensors. a6f48ab16897/iso-22007-6-2014

NOTE 2 Much smaller sensor area size is required than the area size of Peltier module in order to realize the one-dimensional thermal diffusion. Typically, a Peltier module of  $30 \text{ mm} \times 30 \text{ mm}$  size is used as a temperature modulating power source and for detecting the temperature curve a thermopile in the area size of  $5 \text{ mm} \times 2 \text{ mm}$ .

**5.4 Heating circuit**, the power applied to the Peltier module shall be adjusted such as to obtain a high signal to noise ratio on sensors.

NOTE Typically the amplitude of modulated temperature on the Peltier thermo-module is smaller than ±1 K.

**5.5 Measuring circuit**, a thermoelectric voltage from the temperature sensor is measured with a two-phase lock-in amplifier.

### 6 Test specimens

#### 6.1 Measuring temperature

Another temperature sensor is fixed onto the cold junction. This is the surrounding temperature.

### 6.2 Geometry of the probe material

The probe material should have the thickness corresponding to the thermal diffusion length  $\left(d_{\text{probe}} = 1/k, k = \sqrt{\frac{\omega}{2\alpha_{\text{probe}}}}\right)$ . For a probe material with a known thickness, the frequency of temperature