INTERNATIONAL STANDARD

First edition 2015-05-15

Surface active agents — Determination of 1,4-dioxan residues in surfactants obtained from epoxyethane by gas chromatography

Agents de surface — Détermination de la teneur en résidus de 1,4-dioxane dans les agents tensioactifs obtenus à partir **iTeh ST**d'époxyéthane par chromatographie en phase gazeuse

(standards.iteh.ai)

ISO 17280:2015 https://standards.iteh.ai/catalog/standards/sist/1bbdd24c-721f-450c-9861b7c81ba20090/iso-17280-2015

Reference number ISO 17280:2015(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 17280:2015</u> https://standards.iteh.ai/catalog/standards/sist/1bbdd24c-721f-450c-9861b7c81ba20090/iso-17280-2015

© ISO 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Contents

Page

Forew	/ord	iv				
1	Scope	1				
2	Normative references	1				
3	le					
4	Reagents	1				
	4.1 1,4-Dioxane, purity 99,5 % minimum.	1				
	4.2 4-Methyl-1,3-dioxane, purity 98 % minimum.	1				
	4.3 N, N-dimethylformamide (DMF).	1				
	4.4 Carrier gas: nitrogen or helium, purity 99,99 % minimum.	2				
5	Annaratus	2				
0	5.1 Analytical balance 0.1 mg readability	2				
	5.2 Gas chromatography system, attached with temperature programmed device and					
	flame ionization detector (FID).	2				
	5.3 Head space sampling unit	2				
	5.4 20 ml crimped top glass vials, sealing pliers and sealing clamp suitable for head					
	space unit.	2				
	5.5 Septum and crimped tops, lined with aluminium or PTFE, for closing the vials	2				
	5.6 Sealing pliers, for the vials.	2				
	5.7 Capillary column, capable of the separation characteristics shown in Figure 2.	2				
	5.8 Volumetric flasks, 50 ml and 100 ml capacity.	2				
	5.9 Gas tight syringes or glass pipettes, 1 ml ± 0,01 ml capacity.	2				
6	Prenaration of calibration solutions	2				
	6.1 Calibration solution A	2				
	6.2 Calibration solution B <u>ISO 17280:2015</u>	2				
_	https://standards.iteh.ai/catalog/standards/sist/1bbdd24c-721f-450c-9861-	0				
7	Procedure b7c81ba20090/iso-17280-2015	3				
	7.1 Preparation of the test sample	3				
	7.2 Standard addition procedure	3 2				
	7.2.1 Preparation of test sample solutions	3				
	7.2.2 Determination	4				
	7.2.3 Expression of results	4				
	7.5 Relative response factor procedure	4 1				
	7.3.1 Determination of test sample solutions	4 5				
	7.3.2 Freparation of test sample solutions	J 5				
	7.3.4 Fynression of results	J 5				
0	Chromatographic conditions	U				
0		3				
9	Evaluation	6				
	9.1 General	6				
	9.2 Identification	7				
	9.3 Calculation	7				
10	Precision	7				
	10.1 Repeatability limit	7				
	10.2 Reproducibility limit	7				
11	Test report	7				
Annex	A (informative) Statistical data from the ring carried out	8				

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT), see the following URL: Foreword — Supplementary information.

The committee responsible for this document is ISO/TC 91, *Surface active agents*.

<u>ISO 17280:2015</u> https://standards.iteh.ai/catalog/standards/sist/1bbdd24c-721f-450c-9861b7c81ba20090/iso-17280-2015

Surface active agents — Determination of 1,4-dioxan residues in surfactants obtained from epoxyethane by gas chromatography

1 Scope

This International Standard provides a method for the determination of 1,4-dioxane residues in surfactants which are synthesized from epoxyethane, such as alkyl ether sulfates and alcohol ethoxylates.

The method is applicable for samples containing 1,4-dioxane more than 5 mg/kg. For samples containing 1,4-dioxane more than 100 mg/kg, the sample solutions should be diluted to appropriate concentration.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 607, Surface active agents and detergents — Methods of sample division ISO 3696, Water for analytical laboratory use — Specification and test methods (standards.iten.al)

ISO 5725-2, Accuracy (trueness and precision) of measurement methods and results — Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method

https://standards.iteh.ai/catalog/standards/sist/1bbdd24c-721f-450c-9861b7c81ba20090/iso-17280-2015

3 Principle

The sample is weighed into a head space vial and a calibration solution is added. The sealed vial is placed in a head space sampling instrument and allowed to reach thermal equilibrium. A portion of the vapour phase is then analysed by temperature programmed GC with flame ionization detection. Either an internal standard or standard addition method of quantification are employed.

4 Reagents

During the analysis, use only reagents of recognized analytical grade and the water used shall conform to grade 3 in accordance with ISO 3696.

- **4.1 1,4-Dioxane**, purity 99,5 % minimum.
- **4.2 4-Methyl-1,3-dioxane**, purity 98 % minimum.

4.3 N, N-dimethylformamide (DMF).

DMF may be substituted with other solvent. Applicability of the solvent should be evaluated by appropriate validation. Possible substitutes are including, but not limited to following:

- N, N-dimetylacetamide(DMA);
- Dimethyl sulfoxide (DMSO);
- Diethyl formamide (DEF);

ISO 17280:2015(E)

— Formamide.

Diluent shall be free from peaks which interfere 1,4-dioxane and 4-methyl-1,3-dioxane.

4.4 Carrier gas: nitrogen or helium, purity 99,99 % minimum.

5 Apparatus

Ordinary laboratory apparatus and the following.

5.1 Analytical balance, 0,1 mg readability.

5.2 Gas chromatography system, attached with temperature programmed device and flame ionization detector (FID).

5.3 Head space sampling unit

5.4 20 ml crimped top glass vials, sealing pliers and sealing clamp suitable for head space unit.

5.5 Septum and crimped tops, lined with aluminium or PTFE, for closing the vials.

5.6 Sealing pliers, for the vialsh STANDARD PREVIEW

5.7 Capillary column, capable of the separation characteristics shown in Figure 2.

NOTE A 30 m × 0,32 mm (id) fused silica capillary column (film thickness: 0,25 μ m) with nitroterephthalic acid modified polyethylene glycol/stationary phase is gdy sable/sist/1bbdd24c-721f-450c-9861-

b7c81ba20090/iso-17280-2015

5.8 Volumetric flasks, 50 ml and 100 ml capacity.

5.9 Gas tight syringes or glass pipettes, 1 ml ± 0,01 ml capacity.

6 Preparation of calibration solutions

6.1 Calibration solution A

Add approximately 40 ml of DMF (4.3) to a 50 ml volumetric flask. Weigh 0,2 g of 1,4-dioxane (4.1) to record the exact mass to obtain the accurate concentration in each calibration solution I. Make up to volume with DMF and thoroughly homogenize. The solution is A.

Prepare each calibration solution I according to <u>Table 1</u>.

Calibration solution I	I ₁	I ₂	I ₃	I4	I ₅		
Volume of the solution A/ml	0,0	0,5	1,0	2,5	5,0		
Make up to volume with DMF/ml	100	100	100	100	100		
The approximate concentration of 1,4-dioxane ^a /(µg/ ml)	0	20	40	100	200		
^a The accurate concentration of 1,4-dioxane in each calibration solution I is obtained by the calculation with the mass of 1.4-dioxane.							

Table 1 — preparation of calibration solutions

6.2 Calibration solution B

The calibration solution B which contains the calibration solution B_1 and the calibration solution B_2 is used to relative response factor procedure.

- a) Add approximately 40 ml of DMF to a 50 ml volumetric flask, weigh 0,4 g of 4-methyl-1,3-dioxane (4.2) to record the exact mass to obtain the accurate concentration in calibration solution C. Make up to volume with DMF and thoroughly homogenize. The solution is C.
- b) Add 0,5 ml \pm 0,01 ml of this solution C and 1,0 ml \pm 0,01 ml of solution A to a 100 ml volumetric flask, make up to volume with DMF and thoroughly homogenize. The solution is B₁. The accurate concentration of 4-methyl-1,3-dioxane and 1,4-dioxane in the final solution B₁ is obtained by the calculation with the mass of 4-methyl-1,3-dioxane and 1,4-dioxane.
- c) Add 0,5 ml \pm 0,01 ml of this solution C to a 100 ml volumetric flask, make up to volume with DMF and thoroughly homogenize. The solution is B₂. The accurate concentration of 4-methyl-1,3-dioxane in the final solution B₂ is obtained by the calculation with the mass of 4-methyl-1,3-dioxane.

7 Procedure

7.1 Preparation of the test sample

Prepare and store the test sample in accordance with ISO 607.

7.2 Standard addition procedure NDARD PREVIEW

(standards.iteh.ai)

7.2.1 Preparation of test sample solutions

ISO 17280:2015

7.2.1.1 Add 2 g $\pm 10,01$ g of test sample (7.1) to each of three separate head space sample vials. For samples where the 1,4-dioxane content is expected to be less than 20 mg/kg, use the procedure described in 7.2.1.2. For samples expected to have a content of 1,4-dioxane from 20 mg/kg to 100 mg/kg, use the procedure described in 7.2.1.3.

7.2.1.2 Using the 1ml gas tight syringe or glass pipette (<u>5.9</u>), add the following to each of the three vials:

- a) 1 ml \pm 0,01 ml of calibration solution I₁ (<u>6.1</u>) to the first vial. Seal immediately with septum and crimped top (<u>5.5</u>) and homogenize by shaking vigorously.
- b) $1 \text{ ml} \pm 0.01 \text{ ml}$ of calibration solution I₂ (6.1) to the second vial. Seal immediately with septum and crimped top (5.5) and homogenize by shaking vigorously. The added amount of 1,4-dioxane relative to the test sample content is approximate 10 mg/kg.
- c) 1 ml \pm 0,01 ml of Calibration solution I₃ (6.1) to the third vial. Seal immediately with septum and crimped top (5.5) and homogenize by shaking vigorously. The added amount of 1,4-dioxane relative to the test sample content is approximate 20 mg/kg.

7.2.1.3 Using the 1 ml gas tight syringe or glass pipette (<u>5.9</u>), add the following to each of the three vials:

- a) 1 ml \pm 0,01 ml of calibration solution I₁ (6.1) to the first vial. Seal immediately with septum and crimped top (5.5) and homogenize by shaking vigorously.
- b) $1 \text{ ml} \pm 0.01 \text{ ml}$ of calibration solution I₄ (6.1) to the second vial. Seal immediately with septum and crimped top (5.5) and homogenize by shaking vigorously. The added amount of 1,4-dioxane relative to the test sample content is approximate 50 mg/kg.
- c) 1 ml \pm 0,01 ml of Calibration solution I₅ (6.1) to the third vial. Seal immediately with septum and crimped top (5.5) and homogenize by shaking vigorously. The added amount of 1,4-dioxane relative to the test sample content is approximate 100 mg/kg.

7.2.2 Determination

Analyse each blend as prepared in <u>7.2.1</u> by introducing the sample vial into the head space sampling unit (<u>5.4</u>) and analysing in accordance with the chromatographic conditions given in <u>Clause 8</u>.

7.2.3 Expression of results

Construct a graph of peak area (y-axis) versus content (x-axis) for the 1,4-dioxane component. Extrapolate the line to the point where it intercepts the x-axis (see Figure 1). This intersection is the 1,4-dioxane content of the sample, c_1 , expressed as milligrams per kilogram.

ISO 17280:2015

NOTE When calculating the results in accordance with the standard addition procedure, the relative coefficient r should be above 0,995. Or else, prepare the new solutions and determine again. If necessary, add 1~2 determination points.

7.3 Relative response factor procedure

7.3.1 Determination of relative response factor

Add 2 g \pm 0,01 g of sample to a head space sample vial. Using the 1 mL gas tight syringe or glass pipette (5.9), add 1,0 mL \pm 0,01 mL of calibration solution B₁ [6.2, b)] to determinate related response factor. Seal immediately with septum and crimped top (5.5) and homogenize thoroughly by shaking vigorously.

Note The sample in this procedure is the same matrix as the test sample, which does not contain 1,4-dioxane or contains 1,4-dioxane with known concentration, to ensure the consistency of the gas-liquid equilibrium in the sample vial.

Calculate the relative response factor *k* from the following Formula (1):

$$k = \frac{A_s c_2}{A_c c_1} \tag{1}$$

where

- *k* is relative response factor;
- A_s is the area of 1,4-dioxane, in peak area units;
- A_i is the area of 4-methyl-1,3-dioxane, in peak area units;
- c_1 is the 1,4-dioxane content in test sample (<u>7.1</u>), in milligrams per kilogram;
- *c*₂ is the 4-methyl-1,3-dioxane content in the sample (i.e. 20 mg/kg), in milligrams per kilogram.

7.3.2 Preparation of test sample solutions

Add 2 g \pm 0,01 g of test sample (7.1) to a head space sample vial. Using the 1 mL gas tight syringe or glass pipette (5.9), add 1,0 mL \pm 0,01 mL of calibration solution B₂ [6.2, c)]. Seal immediately with septum and crimped top (5.5) and homogenize thoroughly by shaking vigorously.

7.3.3 Determination

Analyse each blend as prepared in 7.3.2 by introduce the sample vial into the head space sampling unit (5.4) and analyse in accordance with the chromatographic conditions given in <u>Clause 8</u>.

7.3.4 Expression of results

ISO 17280:2015

The 1,4-dioxane content, cr) expressed as milligrams per kilogram, is given by the following Formula (2): b7c81ba20090/iso-17280-2015

$$c_1 = \frac{A_1 c_2}{k A_2} \tag{2}$$

where

- A_1 is the area of 1,4-dioxane, in peak area units;
- A₂ is the area of 4-methyl-1,3-dioxane, in peak area units;
- c_1 is the 1,4-dioxane content in test sample (7.1), in milligrams per kilogram;
- *c*₂ is the 4-methyl-1,3-dioxane content in the sample (i.e. 20 mg/kg), in milligrams per kilogram;
- *k* is the relative response factor.

8 Chromatographic conditions

The choice of chromatographic conditions depends on the apparatus in use and can be varied from those given below, provided that suitable separation of the compounds of interest is maintained. The following conditions have been found to be suitable for the column recommended in the note in 5.7.

- a) injection temperature 250 °C;
- b) column settings as follows:
 - 1) initial temperature 50 °C held for 1 min;
 - 2) initial program rate of 10 °C/min to an intermediate temperature of 90 °C;