

Standard Test Method for Rapid Determination of Percent Compaction¹

This standard is issued under the fixed designation D5080; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

1.1 This test method describes the procedure for rapidly determining the percent compaction and the variation from optimum moisture content of an in-place soil for use in controlling construction of compacted earth. These values are obtained by developing a three-point compaction curve at the same moisture content as the in-place soil without knowing the value of the moisture content. The soil used for the compaction curve is normally the same soil removed from the in-place density test. For the remainder of this designation, this test method will be referred to as the *rapid method*.

1.2 This test method is normally performed for soils containing more than 15 % fines (minus No. 200 sieve size).

1.3 When gravel-size particles are present in the soil being tested, this test method is limited to a comparison of the minus No. 4 sieve-size fraction of the in-place density material to a laboratory compaction test of minus No. 4 sieve-size material (Method A of Test Methods D698). Subject to the limitations of Practice D4718, this test method is also applicable to comparisons of other sieve-size fractions (for example, Method C of Test Methods D698) or other compactive efforts (for example, Test Methods D1557) if new moisture adjustment values are determined (see 6.1 and Appendix X2).

1.4 The values stated in SI units are to be regarded as the standard.

1.4.1 The use of balances or scales recording pounds of mass (lbm), or the recording of density in pounds of mass per cubic foot (lbm/ft^3) should not be regarded as nonconformance with this test method.

1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026 unless superseded by this standard.

1.5.1 The procedures used to specify how data are collected, recorded or calculated in this standard are regarded as the industry standard. In addition they are representative of the significant digits that generally should be retained. The proce-

dures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user's objectives; it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.

1.6 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9.

2. Referenced Documents

- 2.1 ASTM Standards:²
- D653 Terminology Relating to Soil, Rock, and Contained Fluids
- D698 Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft³ (600 kN-m/m³))
- D1556 Test Method for Density and Unit Weight of Soil in Place by Sand-Cone Method
- D1557 Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2,700 kN-m/m³))
- D2167 Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method
- D2216 Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
- D2937 Test Method for Density of Soil in Place by the Drive-Cylinder Method
- D3740 Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
- D4718 Practice for Correction of Unit Weight and Water Content for Soils Containing Oversize Particles
- D6026 Practice for Using Significant Digits in Geotechnical Data

¹ This test method is under the jurisdiction of ASTM Committee D18 on Soil and Rock and is the direct responsibility of Subcommittee D18.08 on Special and Construction Control Tests.

Current edition approved Feb. 1, 2008. Published March 2008. Originally approved in 1990. Last previous edition approved in 2000 as D5080 – 00. DOI: 10.1520/D5080-08.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

- D6938 Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)
- E11 Specification for Woven Wire Test Sieve Cloth and Test Sieves

3. Terminology

3.1 *Definitions*—Except as follows in 3.2, all definitions are in accordance with Terminology D653.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *added water*, *z*—amount of water, expressed as a percentage, which is added to wet soil before compacting a specimen in the rapid method. If the moisture content of the wet soil is decreased, the amount of "added water" is a negative number (for example, -2.0 %).

3.2.2 *C value*—ratio, expressed as a percentage, of in-place wet density at field moisture content to the wet density of a laboratory compacted specimen prepared at field moisture content. The *C* value is a comparison of compactive effort of field compaction equipment to standard laboratory compactive effort.

3.2.3 *compaction curve at field moisture content*—plot showing the relationship between wet density at field moisture content (converted wet density) and the percent of "added water."

3.2.4 converted wet density, ρwet_c —wet density of a compacted specimen after being converted (by correcting for the amount of "added water") to the wet density at field moisture content.

3.2.5 *D* value—ratio, expressed as a percentage, of in-place wet density at field moisture content to laboratory maximum wet density as determined from a compaction curve developed at field moisture content as determined by the rapid method. The D value is the rapid method equivalent of percent compaction.

3.2.6 *field moisture content*, w_f —moisture content of the minus No. 4 fraction of in-place soil.

3.2.7 *field wet density,* ρwet_f —wet density as determined from an in-place density test.

3.2.8 maximum wet density at field moisture content, ρm —wet density defined by the peak of the laboratory compaction curve at field moisture content.

3.2.9 $w_f - w_o$ —expression for the difference between the in-place moisture content and the optimum moisture content as determined by the rapid method.

4. Summary of Test Method

4.1 A representative sample of soil is obtained in conjunction with performing Test Method D1556, D2167, D6938, or D2937. Soil specimens are compacted in accordance with Method A of Test Methods D698. At least three specimens are compacted, the first at field (in-place) moisture content, and each of the remaining at different moisture contents. A parabolic curve is assumed as defined by the three compaction points, and the peak point of the curve is determined mathematically. The ratio of in-place wet density at field moisture content to laboratory maximum wet density is determined. An approximation of the difference between optimum moisture content and field moisture content is determined. After the actual field moisture content is determined by ovendrying (usually the next day), the dry densities, unit weights, and optimum moisture content are calculated.

5. Significance and Use

5.1 The rapid method is performed to quickly evaluate percent compaction and variation from optimum moisture content of soils used in construction without knowing the value of field moisture content at the time of the test.

5.1.1 Test results are usually determined within 1 to 2 h from the start of the test.

5.1.2 The value of percent compaction obtained using the rapid method will be the same as the percent compaction calculated using dry density values.

5.1.3 The value of the difference between field moisture content and optimum moisture content will be approximate, but will be within ± 0.1 to 0.2 percentage point of the difference calculated once the field moisture content is known.

5.2 Test results may be used to determine if the compacted material meets density and moisture control values that are specified as a percentage of a standard maximum density and optimum moisture content such as determined in Method A of Test Methods D698. A three-point compaction curve is used in place of the four- or five-point curve required in Test Methods D698.

5.3 This test method is based on the assumption that a three-point compaction curve is a parabola at the section of the curve close to optimum moisture content so that the peak point of the curve can be determined mathematically. This assumption results in the major difference between this test method and obtaining the maximum density and optimum moisture content from a full five-point compaction curve. -08

5.4 Once the field ovendry moisture content has been determined, the values of dry density, dry unit weight, and optimum moisture content can be calculated (see Note 1).

5.5 This test method can also be used for foundation or borrow area material to compare in-place dry density and unit weight and moisture content to laboratory maximum dry density and unit weight and optimum moisture content.

5.6 This test method has the advantage that the maximum density value can be obtained on the same soil excavated during the in-place density test.

Note 1—Since there is no need to immediately determine the moisture contents of material from the in-place density test or the laboratory compaction points, use of rapid moisture content determinations such as microwave, direct heat, nuclear, etc., is not needed. However, if desired, the percent compaction and variation from optimum moisture content may be determined using dry density values based on rapid moisture content test methods. Using three compaction points and determining the maximum density mathematically would still apply. However, the rapid moisture content methods may give results that differ from the accepted oven-dried moisture content values and will lengthen the time of performing this test method.

NOTE 2—Notwithstanding the statements on precision and bias contained in this test method, the precision of this test method is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of these test methods are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable testing depends on many factors; Practice D3740 provides a means of evaluating some of those factors.

6. Interferences

6.1 The moisture adjustment values were determined based on average density and optimum moisture content values of a large number of soil samples containing only minus No. 4. sieve-size particles. The soil being tested should be compared with the information in Appendix X2. For soils having properties significantly different, the moisture adjustment values may not be applicable. If this is the case, new adjustment values must be determined for the specific soil (see Appendix X2).

6.2 For samples significantly dry or wet of their optimum moisture content (+6.0 %, -4.0 %), the values $w_f - w_o$ are less accurate.

7. Apparatus

7.1 Equipment for determining the in-place density as required by this test method used.

7.2 Equipment for preparing laboratory compaction specimens as required for Method A of Test Methods D698.

7.3 Graduated Cylinder, 100-mL capacity, graduated to 1 mL.

7.4 *Mixer*, electric, bench, 3-speed, ¹/₃-hp, 60-cycle, 115-V motor or other appropriate device for mixing the soil with water.

7.5 *Electric Fan*, or other drying device.

STM D508

7.6 *Sieve*, a 4.75-mm (No. 4) sieve conforming to the requirements of Specification E11.

7.7 *Miscellaneous Equipment*—Brushes, knife, mixing pans, scoop, etc., for mixing or trimming soil specimens; bucket with lid or other suitable container for retaining the test sample.

8. Reagents and Materials

8.1 Tapwater that is free of acids, alkalies, and oils and is generally suitable for drinking should be used for wetting the soil prior to compaction.

9. Hazards

9.1 *Safety Hazards*—While there are no safety hazards specific to this test method, there are safety precautions in the referenced test designations that are applicable.

9.2 *Technical Hazards*—The test specimens should be prepared and compacted as quickly as possible to minimize moisture loss. If the test is not performed immediately, store the sample in a moisture-proof container to prevent the loss of moisture. A determination of the moisture content before and after storage is recommended.

10. Calibration and Standardization

10.1 Verify that equipment used in conjunction with this procedure is currently calibrated in accordance with the applicable procedure. If the calibration is not current, perform the calibration before using the equipment for this procedure.

11. Procedure

11.1 The procedure for performing this test method is divided into four sections as follows:

11.1.1 Obtain in-place density,

11.1.2 Compact specimens and obtain compaction curve,

11.1.3 Determine maximum point from compaction curve, D value, and $w_f - w_o$, and

11.1.4 Complete test for record.

Note 3—Since the calculations are an integral part of the procedure, the calculations are included in the sections on procedure.

OBTAIN IN-PLACE DENSITY

11.2 Perform the test for determining in-place wet density in accordance with Test Method D1556, D2167, D6938, or D2937. If the soil being tested contains gravel, determine the in-place wet density of the minus No. 4 (4.75-mm) sieve size fraction of the soil in accordance with Practice D4718.

11.3 The soil used to determine the compaction curve is the material excavated during the in-place density test. While a minimum soil sample of 7 kg of minus No. 4 (4.75-mm) sieve size material is required for this test, a sample size of at least 12 kg is recommended. The actual sample amount will depend on the percent of plus No. 4 sieve-size particles present and if the soil is very wet or dry of optimum moisture content.

11.3.1 If the in-place density is obtained using Test Method D6938 (nuclear method), a representative sample of the soil being tested must be obtained.

^{11.3.2} If sufficient material is not obtained from the in-place density test excavation, obtain additional soil from around the excavation. The additional material must be representative of the soil tested for in-place density.

11.3.2.1 If the in-place density test is to represent the full depth of a compacted lift, obtain any additional material only from the compacted lift being tested.

11.3.2.2 If the excavation for the in-place density test has been contaminated with sand or has been wetted (as from the sand-cone or water replacement methods), the additional material must be obtained by excavating nonaffected soil as close as practical to the original excavation.

11.4 Pass the soil obtained from the in-place density test through a No. 4 (4.75-mm) sieve.

11.5 Thoroughly mix the material passing the No. 4 (4.75-mm) sieve to ensure an even distribution of moisture throughout the soil. The mixing should be performed as quickly as practical to prevent moisture loss.

11.6 Determine the moisture content of a representative specimen in accordance with Method D2216.

11.7 Keep the minus No. 4 material in a moisture-proof container to prevent moisture loss.

Ζ.

COMPACT SPECIMENS AND OBTAIN COMPACTION CURVE

11.8 Compact a specimen of the minus No. 4 material at field moisture content in accordance with Method A of Test Methods D698 and calculate the wet density of the specimen.

11.8.1 The wet density for the first specimen compacted is referred to as the *first specimen wet density* or ρwet_{first} .

11.9 At this point, calculate the C value. The C value is calculated before proceeding because, if it is less than the D value (percent compaction) required in the specifications, the in-place density has failed to meet the specifications. The D value obtained from the rapid method test is always equal to or less than the C value.

11.9.1 Calculate and record the C value in percent as follows:

$$C \text{ value} = \frac{\rho \text{wet}_f}{\rho \text{wet}_{\text{first}}} \times 100 \tag{1}$$

where:

C value = comparison of field compactive effort to standard laboratory compactive effort, %,

 ρwet_f = wet density from the in-place density test, Mg/m³ (lbm/ft ³), and

 ρ wet_{first} = first specimen wet density, Mg/m³ (lbm/ft³).

11.10 Prepare a second specimen for compaction with 2 % added water. This compaction specimen is referred to as the *second specimen*.

Note 4—This test method is written with the second specimen always having 2 % water added. When the in-place density is extremely wet of the optimum moisture content, the second specimen may be a dried-back specimen and the test completed following the principles discussed in this test method.

11.10.1 Place 2.50 kg of soil from the original sample into a mixing pan.

11.10.2 Measure exactly 50 mL of water. This amount of water will increase the moisture content of the soil approximately 2.0 %. This is referred to as 2 % *added water* (+2.0). Although any moisture increment of 1 % or more may be used, the procedure is written for an increment of 2 %.

11.10.3 Thoroughly mix the soil while sprinkling or spraying the water onto the soil to ensure an even distribution of moisture throughout the material. The mixing should be performed as quickly as possible to prevent moisture loss. Cover the mixing pan with a plastic bag, wet towels, or other cover to prevent moisture loss.

11.10.4 Compact the specimen and calculate the wet density of the specimen in accordance with Test Methods D698.

11.10.5 Calculate and record the converted wet density (density at field moisture content) of the specimen as follows:

$$\rho \operatorname{wet}_{c} = \frac{\rho \operatorname{wet}}{1 + (z/100)}$$
(2)

where:

- ρ wet_c = converted wet density of compacted specimen, Mg/m³ (lbm/ft³),
- ρ wet = wet density of compacted specimen, Mg/m³ (lbm/ ft^3),

- = amount of water added to soil before compacting specimen, %, and
- 100 = constant to convert to decimal.

11.11 Prepare a third compaction specimen. Water will be either added or subtracted.

11.11.1 Before the third specimen can be compacted, compare the wet densities of the first two compaction specimens. If the converted wet density of the second specimen is greater than or equal to the wet density of the first specimen, follow 11.11.2. If the converted wet density of the second specimen is less than the wet density of the first specimen, follow 11.11.4.

11.11.1.1 If the converted wet density of the second specimen is less than the wet density of the first specimen, and the difference is within 0.05 Mg/m³ (3 lb/ft³), the requirement for drying the soil (11.11.4) may be eliminated (see Annex A1). The alternate procedure is referred to as the 1% method.

11.11.2 Prepare a third specimen by adding water.

11.11.2.1 Place 2.50 kg of soil from the original sample into a mixing pan.

11.11.2.2 Measure 100 mL of water. This amount will increase the moisture content of the soil approximately 4%. This is referred to as 4% added water (+4.0).

11.11.2.3 Thoroughly mix the soil while sprinkling or spraying the water onto the soil. The mixing should be performed as quickly as possible to prevent moisture loss.

11.11.2.4 Compact the specimen and calculate the wet density of the specimen in accordance with Method A of Test Methods D698.

11.11.2.5 Calculate and record the converted wet density according to 11.10.5.

11.11.2.6 If the converted wet density of the third specimen is less than or equal to that of the second specimen, proceed to 11.12. If the converted wet density of the third specimen is greater than that of the second specimen, an additional specimen must be compacted in accordance with 11.11.3.

11.11.3 Prepare additional specimen(s) by adding water.

11.11.3.1 Repeat 11.11.2.1 – 11.11.2.5 except *increase* the amount of added water by 2 % more than that of the previous specimen (that is, +6.0 %, +8.0 %, etc.). Before compacting material to which 6 % or more water was added, the material should be rescreened through the No. 4 (4.75-mm) sieve. Rescreening breaks down any balls of soil and assists in even moisture distribution.

11.11.3.2 Repeat 11.11.3.1 until the converted wet density of the current specimen is less than or equal to the converted wet density of the previous specimen. Proceed to 11.12.

11.11.4 Prepare a third specimen by subtracting water.

11.11.4.1 Place 2.50 kg of soil from the original sample into a mixing pan.

11.11.4.2 Dry the soil until a 50-g mass loss occurs without loss of soil. This decreases the moisture content of the soil by approximately 2 %. This is referred to as *minus* 2 % added water (-2.0). The soil must be thoroughly mixed after drying.

NOTE 5—The soil specimen may be dried fairly quickly (5 to 10 min) by using a fan, hair dryer, or other device to blow dry air across the pan of soil while slowly mixing the soil. In a humid climate, other methods to quickly dry the soil may be required. If heat is applied, the soil must cool