

SLOVENSKI STANDARD oSIST prEN ISO 8028:2016

01-september-2016

Gumene in/ali polimerne cevi ter cevni priključki za brezzračno brizganje barve -Specifikacija (ISO/DIS 8028:2016)

Rubber and/or plastics hoses and hose assemblies for airless paint spraying - Specification (ISO/DIS 8028:2016)

Gummi- und/oder Kunststoffschläuche und -schlauchleitungen für das luftfreie Farbspritzen - Spezifikation (ISO/DIS 8028:2016)

Tuyaux et flexibles en caoutchouc et/ou en plastique pour pulvérisation sans air des peintures - Spécifications (ISO/DIS 8028:2016)

a31fe496597/sist-en-iso-8028-2018

Ta slovenski standard je istoveten z: prEN ISO 8028

<u>ICS:</u>

83.140.40 Gumene cevi87.100 Oprema za nanašanje premazov

Hoses Paint coating equipment

oSIST prEN ISO 8028:2016

en

oSIST prEN ISO 8028:2016

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN ISO 8028:2018</u> https://standards.iteh.ai/catalog/standards/sist/2f81d18f-247d-4857-bc45-5a31fe496597/sist-en-iso-8028-2018

DRAFT INTERNATIONAL STANDARD ISO/DIS 8028.2

ISO/TC **45**/SC **1**

Voting begins on: **2016-06-20**

Secretariat: DSM

Voting terminates on: **2016-08-15**

Rubber and/or plastics hoses and hose assemblies for airless paint spraying — Specification

Tuyaux et flexibles en caoutchouc et/ou en plastique pour pulvérisation sans air des peintures — Spécifications

ICS: 83.140.40; 87.100

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN ISO 8028:2018</u> https://standards.iteh.ai/catalog/standards/sist/2f81d18f-247d-4857-bc45-5a31fe496597/sist-en-iso-8028-2018

ISO/CEN PARALLEL PROCESSING

This draft has been developed within the International Organization for Standardization (ISO), and processed under the **ISO lead** mode of collaboration as defined in the Vienna Agreement.

This draft is hereby submitted to the ISO member bodies and to the CEN member bodies for a parallel five month enquiry.

To expedite distribution, this document is circulated as received from the committee secretariat. ISO Central Secretariat work of editing and text composition will be undertaken at publication stage.

Reference number ISO/DIS 8028.2:2016(E)

THIS DOCUMENT IS A DRAFT CIRCULATED FOR COMMENT AND APPROVAL. IT IS THEREFORE SUBJECT TO CHANGE AND MAY NOT BE REFERRED TO AS AN INTERNATIONAL STANDARD UNTIL PUBLISHED AS SUCH.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION. ISO/DIS 8028.2:2016(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN ISO 8028:2018 https://standards.iteh.ai/catalog/standards/sist/2f81d18f-247d-4857-bc45-5a31fe496597/sist-en-iso-8028-2018

© ISO 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Contents

Fore	word	iv	
1	Scope		
2	Normative references		
3	Terms and definitions		
4	Types of hose and hose assemblies		
5	Construction and materials		
6	Dimensions and tolerances		
7	 Performance requirements for finished hose. 7.1 Adhesion requirements		
8	Performance requirements for finished hose and hose assemblies8.1Hydrostatic requirements8.2Impulse test requirements8.3Electrical-continuity requirements		
9	Physical requirements of lining for hose only		
10	Frequency of testing	4	
11	Type tests	4	
12	Type tests Test report (standards.iteh.ai)	4	
13	Marking		
14	Recommendations for packaging and storage	5	
Anne	ex A (normative) Type test and routine test	6	
	ex B (informative) Test frequency for production acceptance tests		

ISO/DIS 8028.2:2016(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. <u>www.iso.org/directives</u>

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. <u>www.iso.org/patents</u>

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 1, *Rubber and plastics hoses and hose assemblies*.

This third edition cancels and replaces the second edition (ISO 8028:1999) which has been technically revised as follows:

- Complete text has be edited to reflect terminology in use today,
- Scope has been re-defined,
- Normative references have been updated accordingly,
- <u>Clause 5</u> has been re-written to better define construction and materials clause,
- <u>Clause 7.1</u> on adhesion has been re-written,
- Section on electrical properties has been revised and updated to reflect changes in test methods,
- Addition of new <u>Clause 14</u> on packaging and storage, and
- <u>Annex A</u> and <u>B</u> have been revised to reflect hose and hose assembly tests.

WARNING — Persons using this International Standard should be familiar with normal laboratory practice. This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions.

Rubber and/or plastics hoses and hose assemblies for airless paint spraying — Specification

1 Scope

This International Standard specifies the requirements for four types of hose and hose assemblies for use in airless paint spraying. The four types are differentiated by burst pressure and operating temperature and may be constructed from rubber or plastic materials or a combination of rubber and plastic material.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1402, Rubber and plastics hoses and hose assemblies — Hydrostatic testing

ISO 1817:1999, Rubber, vulcanized or thermoplastic — Determination of the effect of liquids

ISO 6803, Rubber or plastics hoses and hose assemblies — Hydraulic-pressure impulse test without flexing

ISO 7326:2008, Rubber and plastics hoses — Assessment of ozone resistance under static conditions

ISO 7751, Rubber and plastics hoses and hose assemblies — Ratios of proof and burst pressure to maximum working pressure <u>SIST EN ISO 8028:2018</u>

ISO 8031:2009, Rubber and plastics hoses and hose assemblies — Determination of electrical resistance and conductivity

ISO 8033, Rubber and plastics hoses — Determination of adhesion between components

ISO 8330, Rubber and plastics hoses and hose assemblies — Vocabulary

ISO 8331, Rubber and plastics hoses and hose assemblies — Guidelines for selection, storage, use and maintenance

ISO 23529, Rubber — General procedures for preparing and conditioning test pieces for physical test methods

ISO 30013:2011, Rubber and plastics hoses — Methods of exposure to laboratory light sources — Determination of changes in colour, appearance and other physical properties

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 8330 apply.

4 Types of hose and hose assemblies

Four types of hose and hose assembly are specified, as follows:

- Type A: Assemblies designed for a maximum working pressure of 200 bar (20 MPa), intended for spraying paints containing solvents at temperatures from –20 °C to +50 °C.
- Type B: Assemblies designed for a maximum working pressure of 360 bar (36 MPa), intended for spraying paints containing solvents at temperatures from -20 °C to + 50 °C.

- Type C: Assemblies designed for a maximum working pressure of 200 bar (20 MPa), intended for spraying paints containing solvents at temperatures from –20 °C to + 80 °C.
- Type D: Assemblies designed for a maximum working pressure of 360 bar (36 MPa), intended for spraying paints containing solvents at temperatures from -20 °C to + 80 °C.

5 Construction and materials

The hose for use in assemblies shall consist of a smooth seamless lining of rubber or plastics material, a reinforcement of either wire or textile and a cover of rubber or plastics material. A hose with a plastic tube and a rubber cover may also be used.

The hose construction shall contain an electrically conductive element (which may have a conductive lining or cover or bonding wires) capable of being connected to the end fittings to ensure compliance with the electrical requirements as specified in 7.3 throughout the expected life of the hose assembly. The hoses shall be marked either Ω (when conductive compounds are used) or M when bonding wires are used.

The hose assembly shall have permanent couplings. The couplings shall be electrically conducting and connected to the conductive element constructed in the hose. Only couplings that have been used on assemblies that have successfully met the requirements of 7.1, 7.2 and 7.3 may be used.

6 Dimensions and tolerances

The inside diameters and tolerances shall be in accordance with the values given in Table 1.

Table 1 -	— Diamete	ers and	tolera	ances	

SIST EN ISO 8028:2018 https://standards.iteh.ai/catalog/standards/sist/2f81d18f-247d-4857-bc4 5a31fe496597/sist-en-iso-8028-2018 Dimensions in millimetres

Inside diameter	Tolerance
3,2	
4	± 0,5
5	
6,3	
8	. 0.75
9,5	± 0,75
12,5	

7 Performance requirements for finished hose.

7.1 Adhesion requirements

When tested in accordance with ISO 8033, the adhesion between components shall be not less than 2,0 kN. With hoses that use a plastic lining, the adhesion should be measured between the plastic liner and the rubber tie gum and the reinforcement. The rubber layer shall adhere continuously to the plastics liner and should have a value not less than 2.0 kN to the reinforcement.

7.2 Ultra-violet resistance (plastics cover only)

When tested in accordance with Method 1 of ISO 30013:2011, the test piece shall show no signs of cracking.

7.3 Resistance to ozone (rubber cover only)

When tested in accordance with Method 1 of ISO 7326:2008, the test piece shall show no signs of cracking.

8 Performance requirements for finished hose and hose assemblies

8.1 Hydrostatic requirements

When tested at a standard laboratory temperature as specified in ISO 23529 by the method specified in ISO 1402, the assemblies shall withstand the appropriate proof and minimum bursting pressures given in Table 2.

When testing the assemblies at proof or minimum bursting pressure, the appropriate pressure shall be maintained for 1 min and no leakage shall occur.

Hose type en	Working pressure	Proof pressure	Minimum bursting pressure
	bar ^a (MPa)	bar (MPa)	bar (MPa)
А	200 (20)	400 (40)	800 (80)
В	360 (36)	720 (72)	1440 (144)
C https://standar	200 (20)	400 (40)	800 (80)
D	360 (36)	720 (72)	1440 (144)

8.2 Impulse test requirements

Four assemblies shall be tested in accordance with ISO 6803. The pulse pressure used shall be 125 % of the working pressure. The test temperature shall be 50 °C for types A and B and 80 °C for types C and D. Each test assembly shall withstand 150 000 pulses without leaking, cracking, abrupt distortion or other signs of failure. At the end of 150 000 cycles, the hose assembly shall meet the requirements of <u>7.3</u>.

8.3 Electrical-continuity requirements

When tested for electrical continuity in accordance with ISO 8031:2009, every hose assembly shall have a maximum resistance of $3 \times 10^4 \Omega/m$. Method 4.5 or 4.6 should be used depending whether the lining or cover has conducting material. Method 5 in ISO 8031:2009 should be used when electrical continuity is achieved by means of bonding wires.

9 Physical requirements of lining for hose only

When the lining compound is tested in accordance with 8.3 of ISO 1817:1999 and immersed in the liquids given in Table 3 for C068035efig1.EPSh at a standard laboratory temperature as specified in

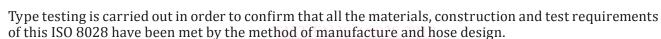
ISO/DIS 8028.2:2016(E)

ISO 23529, the test piece shall show no decrease in volume and any increase in volume shall not exceed the values given in Table 3.

Test liquid	Percentage increase in volume, max.		
	Types A and B Types C and D		
Toluene	10	5	
Acetone	10	5	
Ethanol	15	15	
White spirit, commercial grade	_	5	
Dioctylphthalate	—	5	

Table 3 — Maximum in	ncrease in volume	of test piece
----------------------	-------------------	---------------

10 Frequency of testing


Type testing and routine testing and the minimum frequency of such tests shall be as specified in <u>Annex A</u>.

Type tests are those tests carried out in order to obtain product approval.

Routine tests are those carried out on each length of hose or hose assembly.

Production tests are those tests, specified in <u>Annex B</u>, which should preferably be carried out to control the quality of manufacture. The frequencies specified in <u>Annex B</u> are given as a guide only.

11 Type tests

Type testing shall be repeated at a minimum of every five years or whenever there is a change in the method of manufacture of materials.

12 Test report

A test report shall be supplied if requested by the customer.

13 Marking

Each hose assembly shall be clearly and durably marked, at least every meter, with at least the following information:

- a) the manufacturer's name or identification;
- b) the manufacturer's product identification (optional);
- c) the number of this International Standard and year of publication;
- d) the type of hose;
- e) the working pressure, in bar (MPa), and maximum temperature, in degrees Celsius (°C);
- f) the inside diameter, in millimetres;
- g) means of electrical conductivity (M or Ω); and
- h) the quarter and year of manufacture (e.g. 1Q16) and batch number.