INTERNATIONAL STANDARD

ISO 28921-2

First edition 2015-11-01

Industrial valves — Isolating valves for low-temperature applications —

Part 2: **Type testing**

Robinetterie industrielle — Robinets d'isolement pour application à

iTeh STANDARD PREVIEW
Partie 2: Essais de type
(standards.iteh.ai)

ISO 28921-2:2015 https://standards.iteh.ai/catalog/standards/sist/d90ed407-390e-4c31-b6b6-84d5b0e0f235/iso-28921-2-2015

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 28921-2:2015 https://standards.iteh.ai/catalog/standards/sist/d90ed407-390e-4c31-b6b6-84d5b0e0f235/iso-28921-2-2015

COPYRIGHT PROTECTED DOCUMENT

© ISO 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Contents Pag						
Fore	word		iv			
1	Scop	e	1			
2	Norr	native references	1			
3	Terms and definitions					
4	Test conditions					
	4.1 4.2	Valve selection				
	4.2	Testing criteria and selection of valve design				
		4.2.2 Representative valve design selection				
		4.2.3 Selection and qualification of sealing elements	3			
	4.3 Requirements for test valve, direction for installation and conditions					
	4.4 Preparation for low temperature test					
		4.4.1 General	3			
		4.4.2 Valve tests				
		4.4.3 Test equipment	3			
5	Low temperature testing requirements					
•	5.1	Safety provisions				
	5.2 Cooling of the valve		4			
	5.3	Test gas Equipment eh STANDARD PREVIEW	4			
	5.4					
		5.4.1 General 5.4.2 Test equipment ndards.iteh.ai)	4			
		5.4.3 Instruments calibration				
6	Information to be supplied by the purchaser					
Ann	ex A (no	mation to be supplied by the purchaser https://standards.itch.ai/catalog/standards/sist/d90ed407-390e-4c31-b6b6- ormative) Test procedure for type testing of yalves at low temperature	7			
		formative) Information to be supplied by the purchaser				
Ann	ex C (in	formative) Low-temperature type test record	14			
Bibl	iograpł	ıy	18			

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is Technical Committee ISO/TC 153, *Valves*, Subcommittee SC 1, *Design, manufacture, marking and testing*.

ISO 28921-2:2015

ISO 28921 consists of the **following parts**, under the general title *Industrial valves* — *Isolating valves for low-temperature applications*: 84d5b0e0f235/iso-28921-2-2015

- Part 1: Design, manufacturing and production testing
- Part 2: Type testing

Industrial valves — Isolating valves for low-temperature applications —

Part 2:

Type testing

WARNING — Persons using this International Standard should be familiar with normal laboratory practice. This International Standard does not purport to address all of the safety issues, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory requirements.

1 Scope

This part of ISO 28921 specifies requirements for the type testing of isolating valves for low-temperature applications to verify the performance of valves at a low temperature from -50 °C down to -196 °C.

NOTE Nominal sizes (DN), nominal pipe sizes (NPS), nominal pressure (PN) and Classes are covered in ISO 28921-1.

This part of ISO 28921 does not evaluate valve actuators unless they are integral part of the valve. Valves during testing can be operated manually or an actuator can be used during the testing. The effect of cold gas vapours during testing is taken into consideration in particular if the actuator is mounted directly over the test stand with the cold gases engulfing the actuator.

This part of ISO 28921/does not apply to valves for cryogenic services designed in accordance with ISO 21011, used with cryogenic vessels 0e0f235/iso-28921-2-2015

2 Normative references

The following referenced documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 5208, *Industrial valves* — *Pressure testing of metallic valves*

ISO 28921-1, Industrial valves — Isolating valves for low-temperature applications — Part 1: Design, manufacturing and production testing

ASME B31.3, Process Piping

EN 13480-2, Metallic industrial piping — Part 2: Materials

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 28921-1 and the following apply.

3.1

symmetric seated valve

valve with an internal construction which has a plane of symmetry perpendicular to the axis of the body ends

Note 1 to entry: This is a valve where both seat sealing elements are identical.

3.2

asymmetric seated valve

valve with an internal construction which has no plane of symmetry perpendicular to the axis of the body ends

Note 1 to entry: This is a valve with a single seat offset from the shaft centreline.

3.3

design family

valves of the same type for which the basic design for the outside pressure retaining envelope, in particular the body construction, is the same design for all sizes of the valve range and the same stem movement

Note 1 to entry: Valves of the same type include, for example, gate, globe, ball valves.

Note 2 to entry: Examples of body construction include one piece, two piece or three piece body, bonnet extension.

Note 3 to entry: Examples of stem movement include raising and not rotating.

Note 4 to entry: Valves are considered to be of the same design family if they can all be depicted on one dimensionless cross-sectional drawing, with all the external dimensions added in a table on the same drawing.

3.4

cold working pressure

CWP

maximum fluid pressure assigned to a valve for operation at a fluid temperature up to 38 °C

3.5 operational cycle

iTeh STANDARD PREVIEW

motion of the stem that moves a valve obturator from the fully closed position to the fully open position and returns to the fully closed position

Note 1 to entry: For check valves, an operational cycle is when the obturator moves from the closed position to open and back to the closed position.

84d5b0e0f235/iso-28921-2-2015

4 Test conditions

4.1 Valve selection

Inspection and testing under this part of ISO 28921 shall be carried out on a randomly selected production valve of a design family and of a particular material of construction. Size selection shall be at mid-range of the design range, the valve PN or Class shall be selected so that it qualifies all valves of the same PN or Class and all valves of the lower PN or Class as long as the valves are of an identical design. Valves of the same design family and the same materials of construction tested at lower temperature qualify valves for applications at higher temperatures up to ambient temperature.

NOTE The mid-range valve size selected for testing varies with the size range available from the valve manufacturer. For example, if the valve offering of a particular valve design is DN 50, DN 65, DN 80, DN 100, DN 150 and DN 200 or NPS 2, NPS 2 ½, NPS 3, NPS 4, NPS 6 and NPS 8, the mid-range valve selected for testing is DN 80 or DN 100, and for NPS valves, it is NPS 3 or NPS 4. Either of the two sizes is acceptable. Alternatively, the size to be tested can be decided by an agreement between the manufacturer and the purchaser.

4.2 Testing criteria and selection of valve design

4.2.1 General

The test valve submitted for this type test shall be subjected to:

- 200 operational cycles for on-off valves;
- three operational cycles only, for check valves.

4.2.2 Representative valve design selection

Valve selected for this type testing shall be representative for each design family of the valve type (e.g. gate, globe, ball valve) and closure member type (e.g. single seated, double seated, unidirectional, bidirectional).

The test valve shall be of the same design as the other valves covered by this type test as far as the body and bonnet configuration is concerned (e.g. one piece or multiple piece body construction, integral or bolted on bonnet and the same gaskets types between those valve parts).

4.2.3 Selection and qualification of sealing elements

The pressure retaining seals and packing in the test valve shall be of the same design and materials of construction as all other valves covered by extension by this type test.

4.3 Requirements for test valve, direction for installation and conditions

- **4.3.1** Valves designed as symmetric or asymmetric seated valves, intended for the installation in both directions shall be tested in both directions.
- **4.3.2** Valves designed for unidirectional sealing shall be marked outside the valve body accordingly and shall be tested in one direction only.

4.4 Preparation for low temperature test D PREVIEW

4.4.1 General

(standards.iteh.ai)

Valves submitted for low temperature testing shall be internally clean and free of all water, lubricants, sealants and oils unless otherwise agreed upon between the user and the valve manufacturer. ISO 23208 may be used as a guideline for cleaning of valve components as well as assembled valves subjected to low temperature type testing.

4.4.2 Valve tests

Shell and seat testing shall be in accordance with ISO 5208. The shell test pressure shall be $1,1 \times CWP$ if tested with gas or $1,5 \times CWP$ if tested with alcohol or water. The seat closure test pressure shall be at (6 ± 1) bar¹⁾. After each test is complete, the valve shall be thoroughly dried.

The type testing of valves at low temperature shall be carried out according to the test procedure in Annex A.

An example of a low-temperature type test record is given in Annex C.

4.4.3 Test equipment

- **4.4.3.1** The cooling medium shall be contained in an insulated stainless steel tank that is open on the top. Each test valve shall be blinded with blind flanges that are equipped with support brackets as necessary and small bore austenitic stainless steel tubing connected to the pressurizing media.
- **4.4.3.2** Thermocouples shall be attached to the valve body, bonnet and end flange, except that the number of thermocouples may be reduced where the size of the test valve makes the use of multiple thermocouples impracticable. However, in all cases, a minimum of one thermocouple, located in the valve bonnet area and one inside the valve are required. A minimum of one thermocouple shall be provided to monitor the temperature of the cooling medium.

3

¹⁾ $1 \text{ bar} = 0.1 \text{ MPa} = 10^5 \text{ Pa}$; $1 \text{ MPa} = 1 \text{ N/mm}^2$ (bar is a unit deprecated by ISO).

5 Low temperature testing requirements

5.1 Safety provisions

Low temperature testing is potentially dangerous and test personal shall be aware of this danger and shall receive appropriate training.

All necessary safety measures shall be taken to protect people performing the low temperature testing as well as other personal attending those tests. It is highly recommended to have the test area shielded up by appropriate barriers or to perform the testing in an underground test area with a video camera for the purpose of a visual observation of the test.

5.2 Cooling of the valve

The tested valve shall be installed into the cooling tank and it shall be oriented such that the stem position is vertical. Check valves may be oriented in either the vertical or horizontal disc position.

Cooling begins as the valve is lowered into the test tank and submerged into or sprayed with the cooling medium. Alternatively, if the cooling medium is gas, the cooling begins with the introduction of the gas into the cooling tank.

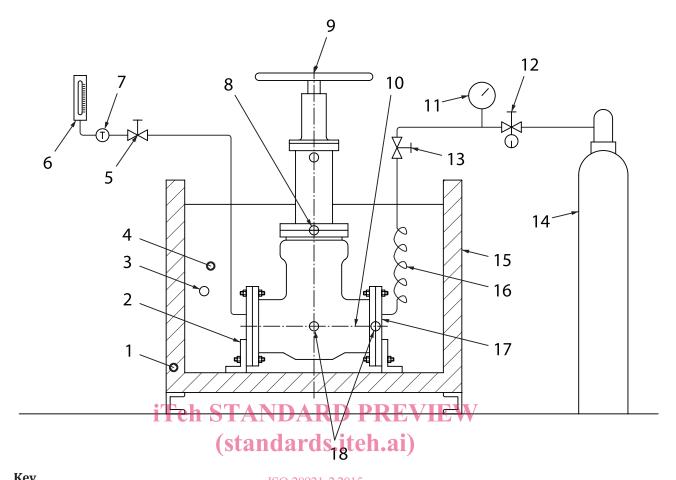
The valve temperature, as well as the cooling medium temperature and level (if the cooling medium is liquid) shall be continuously monitored and recorded. The test shall begin when the valve temperature is stabilized within the specified test temperature tolerances. See <u>Table 1</u>.

Table 1 — Test temperature

(standards itch ai)					
Cooling medium	Test valve temperature				
Dry ice, mixed with a heat transfer fluid or coglect by nitrogen https://standards.iteh.ai/catalog/s	Low-temperature at - 50 °C tandards/sist/d90ed407-390e-4c31-b6b6-				
Nitrogen gas 84d5b0e0f	Low temperature of between – 50 °C and – 196 °C				
Other medium may be used by agreement between the purchaser and manufacturer	ı				
Liquid nitrogen	Low temperature at – 196 °C				
NOTE Valves with a minimum design temperature – 196 °C, provided the valve materials are suitable.	of between - 50 °C and - 196 °C can be tested at				

5.3 Test gas

Test gas, see <u>Table 2</u>, from a charged bottle is used to provide test pressure on the inlet side of the valve.


Table 2 — Test gas

Test gas	Test valve temperature
Nitrogen mixed with 10 % helium	Low temperature at – 110 °C and higher
Minimum 97 % pure helium	Any temperature down to – 196 °C

5.4 Equipment

5.4.1 General

A simplified schematic arrangement for immersion cold testing is shown in Figure 1. Its purpose is to facilitate understanding of the standard test. It is not a required arrangement.

Key	ISO	<u>28921-2</u>	<u>:2015</u>
1	insulation https://standards.iteh.ai/catalog/s	tand 1 0ds/s	sithermocouple inside-valve-
2	support bracket 84d5b0e0f2	235/ ipq -28	pressure gauge
3	cooling medium thermocouple	12	pressure regulator
4	cooling medium	13	isolation valve upstream
5	isolation valve downstream	14	test gas bottle
6	flowmeter	15	tank
7	thermocouple (helium exit temperature)	16	pre-cooling coil
8	thermocouple on body/bonnet flange	17	blind flange
9	test valve	18	optional thermocouple on body and, optionally, on blind flange

Figure 1 — Test set-up

Before commencing the low temperature test, all connections to and from the tested valve shall be verified for tightness. A gas test shall be performed at the maximum valve cold working pressure or maximum seat test pressure, whichever is lower. For external leakage detection, a soap solution or helium leak detector shall be used. Any detected leakage shall be eliminated.

The tubing or piping between the test gas bottle and the tested valve as well as the tubing or piping downstream the test valve, shall be selected so the pressure loss of the flowing test gas is minimized.

5.4.2 Test equipment

5.4.2.1 Pressure gauges

Pressure gauges shall have indicating range between 1/3 and 2/3 of the maximum gas test pressure. Accuracy of the gauges shall be within 3 % of the total gauge scale.

5.4.2.2 Cooling tank

Cooling tank shall be adequately sized to accommodate the test valve, there shall be a minimum space of 100 mm between the test valve and the inside walls of the cooling tank. If the cooling media is liquid, there shall be enough space to completely submerge the test valve including part of the extended bonnet so the liquid level is minimum 25 mm above the bonnet to valve bolting.

If the spraying method with cooling medium is used, then the test valve shall be completely sprayed, including the bottom part of the extended bonnet.

5.4.2.3 Flowmeter

Test valve seat leakage shall be measured at the flowmeter, and shall be at standard atmospheric conditions.

Any type of flowmeter may be used, provided it can be calibrated, for example measuring cylinder, gas flowmeter soap film type or flow rotameter.

Some flowmeters (e.g. electronic mass flowmeters) are not affected by pressure or temperature changes. When such a flowmeter is used test gas pressure and temperature measurements (as well as correction) at the flowmeter is not required.

5.4.2.4 Pressure regulator https://standards.iteh.ai/catalog/standards/sist/d90ed407-390e-4c31-b6b6-

The pressure regulator controls the pressure and the flow of test gas flowing to the test valve.

5.4.3 Instruments calibration

All instruments (flowmeter, pressure gauges, torque wrench, etc.) shall be calibrated.

6 Information to be supplied by the purchaser

See Annex B.

Annex A

(normative)

Test procedure for type testing of valves at low temperature

A.1 General

The following procedure covers the testing for sealing and operability of valves at one of the following temperatures:

- a) valve tests at 196 °C;
- b) valve tests at 50 °C;
- c) an alternative temperature of between 50 °C and 196 °C may be used.

The test temperature shall not be less than the minimum design temperature of the valve. For low temperature suitability of metallic materials, use ASME B31.3 or EN 13480-2.

A.2 Test procedures STANDARD PREVIEW

A.2.1 Testing flow chart (standards.iteh.ai)

See Figure A.1.

ISO 28921-2:2015

https://standards.iteh.ai/catalog/standards/sist/d90ed407-390e-4c31-b6b6-84d5b0e0f235/iso-28921-2-2015