NTERNATONAL STANOARO
 1395

Short pitch transmission precision bush chains and chain wheels

Chaînes de transmission de précision à douilles, à pas court, et roues dentées correspondantes

First edition - 1977-01-15
iTeh STANDARD PREVIEW (standards.iteh.ai)
https://standards.iteh.ai/catalog/standards/sist/a324b7d7-ea76-489f-8049-
b7cdd54c49cb/iso-1395-1977

[^0]
FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

Prior to 1972, the results of the work of the technical committees were published V UW as ISO Recommendations; these documents are in the process of being transformed into International Standards. As part of this process, TTechnical Committee ISO/TC 100, Chains and chain wheels for power transmission and conveyors, has reviewed ISO Recommendation R 1395-1970 and found it technically suitable for transformation. International Standard ISO 1395 therefore: 1Peplaces ISO Recommendation R 1395-1970, topwhichitlis tetehnically/identicards/sista324b7d7-ea76-489f-8049-
b7cdd54c49cb/iso-1395-1977
ISO Recommendation R 1395 had been approved by the member bodies of the following countries:

Austria	Greece	Sweden
Belgium	India	Switzerland
Brazil	Israel	Thailand
Czechoslovakia	Italy	Turkey
Chile	Japan	United Kingdom
Finland	Korea, Rep. of	Yugoslavia
France	Romania	
Germany	South Africa, Rep. of	

The member bodies of the following countries had expressed disapproval of the Recommendation on technical grounds:
U.S.A.*
U.R.S.S.

* Subsequently, this member body approved the Recommendation.

No member body disapproved the transformation of the Recommendation into an International Standard.

Short pitch transmission precision bush chains and chain wheels

1 SCOPE AND FIELD OF APPLICATION

This International Standard specifies the characteristics of short pitch precision bush chains of simple and multiplex construction suitable for the mechanical transmission of power and allied applications, together with the tooth gap forms and rim profiles of their associated chain wheels. It covers dimensions, tolerances, measuring loads and minimum breaking loads.

It applies to chains of two pitches only, namely 0.25 in $(6,35 \mathrm{~mm}$ and 0.375 in $(9,525 \mathrm{~mm})$ eh STANDARI The dimensions of chains specified ensure complete interchangeability of any given size and provide interchange-d.S. Used in manyfacture ability of individual links of chains for repair purposes.

ISO 1395:1

2 REFERENCE
https://standards.iteh.ai/catalog/standards/
b7cdd54c49cb/iso-
ISO/R 286, ISO system of limits and fits - Part I : General, tolerances and deviations.

3 CHAINS

3.1 Nomenclature

Figures 1,2 and 3 do not define the actual form of the chain plates. Dimensional definitions are contained in tables 1 and 1 M .

3.2 Designation

Transmission precision bush chains are designated by the ISO chain numbers given in tables 1 and 1M, first column,
the first two digits expressing the pitch in sixteenths of an inch. The chain numbers in tables 1 and 1 M are supplemented by a hyphenated suffix, 1 for simple chain, 2 for duplex chain, 3 for triplex chain, etc. (for example $04 \mathrm{C}-1,04 \mathrm{C}-2$, 04C-3, etc.).

3.3 Dimensions

Chains shall conform to the dimensions given in tables 1 and 1 M . The maximum and minimum dimensions are specified to ensure interchangeability of links as produced by different makers of chain. They represent limits for interchangeability, but are not the actual tolerances to be

3.4 Breaking loads

The test leñgth shafl have à minimum of five free pitches. The ends shall be attached to the testing machine shackles by a pin through the plate holes or through the bushes or by the bush common to an inner and outer link. The shackles shall be so designed as to allow universal movement; the actual method to be used is left to the discretion of the manufacturer.

Tests in which failures occur adjacent to the shackles shall be disregarded.
The minimum tensile breaking loads shall be those given in tables 1 and 1 M .

3.5 Proof loading

All chains shall be proof loaded to one-third of the minimum tensile breaking load given in tables 1 and 1 M .

Inner link

Outer link, simple
https://standards.iteh.ai/catalog/standards/sist/a324b7d7-ea76-489f-8049-

Connecting link with spring fastener

Cranked link, single

Cranked link, double

FIGURE 2 - Types of links

3.6 Length accuracy

Finished chains shall be measured after proof loading (where applicable) but before lubricating.

The standard length for measurement shall be 49 times the pitch of the chain and shall terminate at each end in an inner link.

The chain shall be supported throughout its entire length, and the measuring load given in tables 1 and 1 M shall be applied.

To comply with this International Standard, the length shall be the nominal length subject to the tolerance :

$$
+\underset{0}{0,15} \%
$$

The length accuracy of chains which have to work in parallel shall be within the above limits but matched by agreement with the manufacturer.

3.7 Marking

The chains should be marked with :
a) the manufacturer's name or trade mark;
b) the ISO chain number (column 1 of tables 1 and 1 M).

iTeh STANDARD PREVIEW (standards.iteh.ai)

The overall width of a chain with a joint-fastener is equal to the width over the bearing pins, b_{4}, b_{5} or b_{6}, plus b_{7}, for riveted pin or plus
The width over bearing pins for chains wider than triplex $=b_{4}+p_{t}$ (number of strands in chain -1). FIGURE 3 - Key to tables 1 and 1 M
iTeh STANDARD PREVIEW

1	2	3	4	5	6	7	8	O 939	5:11007	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
$\begin{gathered} \text { ISO } \\ \text { chain } \\ \text { number } \end{gathered}$	Pitch	$\begin{array}{\|c\|} \hline \text { Bush } \\ \text { diameter } \end{array}$	Width between inner plates		ndards Bush bore	iteh.ai Chain path depth	catalos cannerplate depth		$\begin{aligned} & \mathrm{ds} / \text { sist/a324b7d7-ea7 } \\ & \text { o- 1395-1977 } \\ & \text { link dimensions* } \end{aligned}$			$\begin{gathered} \hline-489 \mathrm{f}-\mathrm{c} \\ \text { Trans- } \\ \text { varse } \\ \text { pitch } \end{gathered}$	8049- Width over inner link	Width between outer plates	Width over bearing pins			Ad. ditional width for joint fastener	Measuring load			Breaking load			
												Simple			Duplex	Triplex	Simple		Duplex	Triplex	Simple	Duplex	Triplex		
		d_{1} $\max .$	$\begin{gathered} b_{1} \\ \text { min. } \end{gathered}$	$\begin{gathered} d_{2} \\ \text { max. } \end{gathered}$	$\begin{gathered} d_{3} \\ \mathrm{~min} . \end{gathered}$	$\begin{gathered} h_{1} \\ \mathrm{~min} . \end{gathered}$	$\begin{gathered} h_{2} \\ \text { max. } \end{gathered}$	$\begin{gathered} h_{3} \\ \text { max. } \end{gathered}$	$\begin{gathered} l_{1} \\ \mathrm{~min} . \end{gathered}$	$\underset{\text { min. }}{\substack{l_{2} \\ \hline}}$	c		$p_{\text {t }}$	$\begin{gathered} b_{2} \\ \max . \end{gathered}$	$\begin{gathered} b_{3} \\ \text { min. } \end{gathered}$	$\begin{gathered} b_{4} \\ \text { max. } \end{gathered}$	$\begin{gathered} b_{5} \\ \text { max. } \end{gathered}$		b_{6} max.				min.	min.	min.
	in	lbf	lbf	lbf	lbf	lbf	lbf																		
04 C	0.250	0.130	0.125	0.091	0.092	0.247	0.237	0.205	0.104	0.121	0.003	0.252	0.189	0.194	0.36	0.61	0.86	0.10	10	20	30	780	1560	2340	
06 C	0.375	0.200	0.188	0.141	0.143	0.366	0.356	0.307	0.156	0.181	0.003	0.399	0.294	0.299	0.52	0.92	1.32	0.13	16	32	48	1750	3500	b 250	

TABLE 1M - Chain dimensions, measuring loads and breaking loads (Metric units)

	mm	mun	mm	daN	daN	dan	daN	daN	daN															
04 C	6,35	3,30	3,18	2,311	2,34	6,27	6,02	5.21	2.64	3.06	0.08	6.40	4.80	4.93	9.1	15,5	21.8	2,5	5	10	15	350	700	1050
06 C	9,525	5,08	4,77	3,580	3,63	9,30	9.05	7,80	3,96	4,60	0,08	10,13	7.47	7,60	13.2	23,4	33,5	3,3	7	14	21	790	1580	2370

* Cranked links are not recommended for use on chains which are intended for onerous applications.

ISO 1395-1977 (E)

4 ATTACHMENTS

Standard attachments for use with 06 C size chain are shown in figures 4,5 and 6. Dimensions shall conform to those shown in tables 2,3 and 4.

a) extension one side of chain

b) extension both sides of chain

a) extension one side of chain

(standards.itteh. bliiextension both sides of chain

FIGURE 4 - Straight linkplate extensioneh ai/catalog/standards/sist $\mathcal{T A B L E} / 3$ Z-Dimensions of bent link plate extension

b7cdd54c49

TABLE 2 - Dimensions of straight link plate extension

ISO chain number	d_{4} min.		b_{8}		e	
	in	mm	in	mm	in	mm
06 C	0.102	2,59	0.375	9,53	0.050	1,27

FIGURE $6 \times$ - Extended pin on one side of chain

TABLE 4 - Dimensions of extended pin

ISO chain number	d_{2}		b_{9}	
	in	mm	in	mm
06 C	0.141	3,58	0.375	9,53

5 CHAIN WHEELS

5.1 Nomenclature

The nomenclature for basic chain dimensions on which all wheel data are based will be found in figure 3. Chain wheel nomenclature is covered under the respective headings.

5.2 Diametral dimensions of wheel rim

5.2.1 Nomenclature

5.2.2.4 Measurement overpins

$M_{R} \quad$ for even numbers of teeth $=d+d_{R} \min$.
M_{R} for odd numbers of teeth $=d \cos \frac{90^{\circ}}{z}+d_{\mathrm{R}} \mathrm{min}$.
The measurement over pins of wheels with even numbers of teeth shall be carried out over pins inserted in opposite tooth gaps.

The measurement over pins of wheels with odd numbers of teeth shall be carried out over pins in the tooth gaps most nearly opposite.

The limits of tolerance for the measurement over pins are identical to those for corresponding root diameters.

5.3 Wheel tooth gap forms

5.3.1 Nomenclature

5.2.2 Dimensions

5.2.2.1 PITCH CIRCLE DIAMETER

$d=\frac{p}{\sin \frac{180^{\circ}}{z}}$ (see the annex for pitch circle diameters

5.2.2.2 MEASURINGPINDIAMETER

$d_{\mathrm{R}}=d_{1}$ (see 5.3.1) subject to tolerance limits

$$
+{ }_{0}^{0.000} 5 \text { in }(0,01 \mathrm{~mm})
$$

5.2.2.3 ROOT DIAMETER

$d_{f}=d-d_{1}$ subject to the following tolerance limits :

Root diameter	Upper deviation	Lower deviation
$d_{\mathrm{f}} \leqslant 5$ in $(127 \mathrm{~mm})$	0	0.010 in $(0,25 \mathrm{~mm})$
$d_{\mathrm{f}} \leqslant 9.85$ in $(250 \mathrm{~mm})$	0	0.012 in $(0,30 \mathrm{~mm})$
$d_{\mathrm{f}}>9.85$ in $(250 \mathrm{~mm})$	0	$\mathrm{~h} 11^{*}$

* See ISO/R 286.
$p=$ chordal pitch, equal to chain pitch
$d \quad=$ pitch circle diameter
$d_{1}=$ bush diameter, maximum
$r_{i} \quad=$ bush seating radius
$\alpha \quad=$ bush seating angle
$r_{\mathrm{e}}=$ tooth flank radius
$h_{\mathrm{a}} \quad=$ height of tooth above pitch polygon
$d_{a}=$ tip diameter
$d_{\mathrm{f}} \quad=$ root diameter
$z \quad=$ number of teeth

5.3.2 Dimensions

The limits of the tooth gap form are determined by the minimum and maximum tooth gap forms. The actual tooth gap form provided by cutting or an equivalent method shall

[^0]: Descriptors : precision equipment, chains, chain wheels, chain drives, specifications, dimensions, designation.

