This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation: B639–97 Designation: B 639 – 02 (Reapproved 2008)

Standard Specification for Precipitation Hardening Cobalt-Containing Alloys (UNS R30155 and UNS R30816) Rod, Bar, Forgings, and Forging Stock for High-Temperature Service¹

This standard is issued under the fixed designation B 639; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification covers hot- and cold-worked precipitation hardenable cobalt-containing alloys (UNS R30155 and UNS R30816) rod, bar, forgings, and forging stock for high-temperature service.

1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards: ²

B 880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys E 8 Test Methods for Tension Testing of Metallic Materials

E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications E38Methods for Chemical Analysis

of Nickel-Chromium and Nickel-Chromium-Iron Alloys

E 139Practice- Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials E 1473 Test Methods for Chemical Analysis of Nickel, Cobalt, and High-Temperature Alloys

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 *barbar*, *n*—material of rectangular (flats), hexagonal, octagonal, or square solid section in straight lengths.
- 3.1.2 *rod*rod, *n*—material of round solid section furnished in straight lengths.

4. Ordering Information

4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to, the following:

- 4.1.1 Alloy Name or UNS Number (see Table 1).
- 4.1.2 ASTM Designation, including year of issue. Table 2Table 3, including year of issue.
- 4.1.3 Condition (temper) (Table 4).

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States

¹ This specification is under the jurisdiction of ASTM Committee B-2B02 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt and Their Alloys.

^{*} New designation established in accordance with Practices E 527 and SAE J1086. Practice for Numbering Metals and Alloys (UNS). Current edition approved Apr. 10, 1997. Published February 1998. Originally published as A639-70. Redesignated B639 in 1980. Last previous edition B639-92.

Current edition approved March 1, 2008. Published March 2008. Originally approved in 1970. Last previous edition approved in 2002 as B 639-02. Annual Book of ASTM Standards, Vol 03.01.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

🦻 B 639 – 02 (2008)

TABLE 1 Chemical Requirements

Element	Composition Limits, %	Product (Check) Analysis Variations, under min or over max, of the Specified Limit of Element	(4 F
	UNS R30155 (Formerly	UNS R30816 (Formerly	
-	Grade 661)	Grade 671)	
Carbon	0.08 to 0.16	0. 01	e
Manganese	1.00 to 2.00	0.03 under min 0.04 over max	r
Manganese	1.00 to 2.00	0.03 under min 0.04 over	1
		max	-
Silicon	1.00 max	0.05	1
Silicon	1.00 max	0.05	1
Phosphorus	0.040 max	0.005	Ē
Phosphorus	0.040 max	<u>0.005</u>	€
Sulfur	0.030 max	0.005	e
Sulfur	0.030 max	<u>0.005</u>	e
Chromium	20.00 to 22.50	0.25	1
Chromium	20.00 to 22.50	0.25	1
Nickel	19.00 to 21.00	0.20 under min 0.25 over	1
		max	C
Nickel	19.00 to 21.00	0.20 under min—0.25 over	1
		max	
Molybdenum	2.50 to 3.50	0.05 under min 0.10 over	3
		max	
Tungsten	2.00 to 3.00	0.10	3
Tungsten	2.00 to 3.00	0.10	3
Columbium + tantalum	0.75 to 1.25	0.05	3
Columbium + tantalum	0.75 to 1.25	0.05	3
Iron	remainder ⁴	5.00 max0.07	-
Iron	remainder ^A	5.00 max	
Cobalt	18.50 to 21.00	0.20 under min—0.25 over	4
		max	
Cobalt	<u>18.50 to 21.00</u>	0.20 under min 0.25 over	4
Nitrogen	0.20 max 0.21 01S. Item	a 0.01	-

^A Element shall be determined arithmetically by difference.

TABLE 2 Tensile and Hardness Requirements^A

Alloy	Heat Treatment	Tensile Strength, min, psi (MPa)	Yield Strength (0.2 % offset), min, psi (MPa)	Elongation in 2 in. or 50.8 mm or 4 <i>D</i> , min, %	Reduction of Area, min, %	Brinell Hardness, min
R30155	solution + precipitation harden /	110 000 (760)	71 50 000 (345) 47 4	-87bd-230-5a4363	736/ 30	639_0192008
R30816	solution + precipitation harden	130 000 (895)	60 000 (415)	20	20	248

^A The supplier shall demonstrate that the material will meet fully heat-treated properties after full heat treatment in accordance with Table 4.

TABLE 3 Stress-Rupture Requirements^A

Alloy	Heat Treatment	Test Temperature, °F (°C)	Stress, psi (MPa) ^{<i>B</i>}	Minimum, h	Elongation in 2 in. or 50.8 mm, or 4 <i>D</i> , min, %
R30155	solution + precipitation harden	1350 (732)	24 000 (165)	100	10
R30816	solution + precipitation harden	1350 (732)	38 000 (260)	100	8

^A The supplier shall demonstrate that material will meet fully heat-treated properties after full heat treatment in accordance with Table 4. ^B Test specimens meeting minimum requirements may be overloaded to produce rupture in a reasonable and practical time period.

TABLE 4 Heat Treatment^A

Alloy	Recommended Solution Treatment	Precipitation Hardening Treatment
R30155	2125 to 2175°F (1162 to	1475 to 1525°F (801 to 829°C)
	1190°C) hold 30 min, minimum, water quench	hold 4 h, air cool or furnace
R30816	2130 to 2170°F (1165 to	1390 to 1410°F (754 to 765°C)
	1187°C), hold 1 h, water	hold 12 h, air cool or furnace
	quench	cool

^A The purchaser shall designate on the purchase order or inquiry any partial stage of heat treatment required on the material to be shipped.

4.1.4 Section-Rod or bar (round, rectangle, square, hexagon, octagon).

4.1.4.1 Forging (sketch or drawing).

4.1.5 Dimensions, including length.