ISO/IEC JTC 1/SC 17
Secretariat: BSI
Voting begins on:
2014-02-07
Voting terminates on: 2014-04-07

Identification cards - Contactless integrated circuit cards - Proximity cards -

Part 2:
Radio frequency power and signal

iTeh STARterface $\operatorname{PREVIEW}$
 (stamendment 5 Fi) Bit rates of 3fc/4, fc, $3 \mathrm{fc} / 2$ and 2 fc from PCD to PICC

58a930Cdaftes'de iproximité-2010-fdamd-5
Partie 2: Interface radiofréquence et des signaux de communication
AMENDEMENT 5: Débits binaires de 3fc/4, fc, 3fc/2 et 2fc de PCD à PICC ISO/IEC 14443-2:2010/FDAM 5:2014(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/IEC 14443-2:2010/FDAmd 5
https://standards.iteh.ai/catalog/standards/sist/0ee5df06-2a43-4e32-84a2-58a930041e62/iso-iec-14443-2-2010-fdamd-5

COPYRIGHT PROTECTED DOCUMENT

(C) ISO/IEC 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale $56 \cdot \mathrm{CH}-1211$ Geneva 20
Tel. + 41227490111
Fax + 41227490947
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of thelmeaning of ISO specific terms and expessions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following (UREAForeword SSupplementary information
The committee responsible for this document is ISO/IEC JTC 1, Information technology, SC 17, Card and personal identification.

ISO/IEC 14443-2:2010/FDAMd 5
https://standards.iteh.ai/catalogstandards/sist/0ee5df06-2a43-4e32-84a2-58a930041e62/iso-iec-14443-2-2010-fdamd-5

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/IEC 14443-2:2010/FDAmd 5
https://standards.iteh.ai/catalog/standards/sist/0ee5df06-2a43-4e32-84a2-58a930041e62/iso-iec-14443-2-2010-fdamd-5

Identification cards - Contactless integrated circuit cards - Proximity cards -

Part 2:

Radio frequency power and signal interface

AMENDMENT 5: Bit rates of 3fc/4, fc, 3fc/2 and 2fc from PCD to PICC

Page 2, Clause 4
Add the following new symbols to the list in alphabetical order:
AP actual phase value
ACP actual constellation point
EPI elementary phase intervâ NDARD PREVIEW
etu elementary time unitstandardls.iteh.aii)
ISI inter symbol interference/IEC 14443-2:2010/FDAmd 5
SI_{d} https://standards.teh.ai/catalog/standards/sist/0ee5dif06-2a43-4e32-84a2-
inter symbol interferencelangle-iec-14443-2-2010-fdamd-5
ISI $_{\mathrm{m}} \quad$ inter symbol interference magnitude
NP nominal phase value
$\mathrm{P}_{\mathrm{H}} \quad$ complex constellation point of the maximum NP
$P_{\mathrm{L}} \quad$ complex constellation point of the minimum NP
PNP previous nominal phase
PR phase range
PSK phase shift keying
\# number

Page 6, 8.1.1
Replace the subclause with the following:
"The bit rate for the transmission during initialization and anticollision shall be $f c / 128$ ($\sim 106 \mathrm{kbit} / \mathrm{s}$). The bit rate for the transmission after initialization and anticollision shall be one of the following:

- $f c / 128(\sim 106 \mathrm{kbit} / \mathrm{s})$,
- $f c / 64$ ($\sim 212 \mathrm{kbit} / \mathrm{s})$,
- $f c / 32$ ($\sim 424 \mathrm{kbit} / \mathrm{s})$,
- $f c / 16(\sim 848 \mathrm{kbit} / \mathrm{s})$,
- $f c / 8(\sim 1,70 \mathrm{Mbit} / \mathrm{s})$,
- $f c / 4(\sim 3,39 \mathrm{Mbit} / \mathrm{s})$,
- $f c / 2(\sim 6,78 \mathrm{Mbit} / \mathrm{s})$,
- 3fc/4 (~10,17 Mbit/s),
- $f c(\sim 13,56 \mathrm{Mbit} / \mathrm{s})$,
- 3fc/2 (~20,34 Mbit/s),
- 2fc ($\sim 27,12 \mathrm{Mbit} / \mathrm{s})$."

Page 14

Add new subclause 8.1.2.4:

"8.1.2.4 Modulation for bit rates of $3 f c / 4, f c, 3 f c / 2$ and $2 f c$

See A.1."
iTeh STANDARID PREVIEW (standards.iteh.ai)

Page 15

ISO/IEC 14443-2:2010/FDAmd 5
Add new subclause 8.1.3.3: $\mathrm{https} / /$ standards.iteh.ai/catalog/standards/sist/0ee5df06-2a43-4e32-84a2-

"8.1.3.3 Bit representation and coding for bit rates of $3 f c / 4, f c, 3 f c / 2$ and $2 f c$

See A.2."

Page 15, 8.2.1
Replace the paragraph with the following:
"The bit rate for the transmission during initialization and anticollision shall be $f_{c} / 128(\sim 106 \mathrm{kbit} / \mathrm{s})$.
The bit rate for the transmission after initialization and anticollision shall be one of the following:

- $f c / 128$ (~106 kbit/s),
- $f c / 64(\sim 212 \mathrm{kbit} / \mathrm{s})$,
- $f c / 32(\sim 424 \mathrm{kbit} / \mathrm{s})$,
- $f c / 16(\sim 848 \mathrm{kbit} / \mathrm{s})$,
- $f c / 8(\sim 1,70 \mathrm{Mbit} / \mathrm{s})$,
- $f c / 4(\sim 3,39 \mathrm{Mbit} / \mathrm{s})$,
- $\quad f c / 2(\sim 6,78 \mathrm{Mbit} / \mathrm{s})$,"

Pages 17 to 18, 9.1.1
Replace: "- $\quad f_{c} / 2(\sim 6,78 \mathrm{Mbit} / \mathrm{s})$." with the following:
"- $\quad f c / 2(\sim 6,78 \mathrm{Mbit} / \mathrm{s})$,

- 3fc/4 (~10,17 Mbit/s),
- $f c(\sim 13,56 \mathrm{Mbit} / \mathrm{s})$,
- 3fc/2 (~20,34 Mbit/s),
- $2 f c(\sim 27,12 \mathrm{Mbit} / \mathrm{s}) . "$

Page 23, 9.1.2
Insert the following new subclause title:
"9.1.2.1 Modulation for bit rates of $f c / 128, f c / 64, f c / 32, f c / 16, f c / 8, f c / 4$ and $f c / 2 "$
Insert the following new subclause 9.1.2.2 title and text:

"9.1.2.2 Modulation for bit rates of $3 f c / 4, f c, 3 f c / 2$ and $2 f c$

See A.1."

Page 24, 9.1.3

iTeh STANDARD PREVIEW
 (standards.iteh.ai)

Insert the following new subclausettitle:C 14443-2:2010/FDAmd 5
https://standards.iteh.ai/catalog/standards/sist/0ee5df06-2a43-4e32-84a2-
"9.1.3.1 Bit representation and coding for bit rates of $f c / 128, f c / 64, f c / 32, f c / 16, f c / 8, f c / 4$ and $f c / 2$ " Insert the following new subclause 9.1.3.2 title and text:
"9.1.3.2 Bit representation and coding for bit rates of $3 f c / 4, f c, 3 f c / 2$ and $2 f c$
See A.2."

Page 24, 9.2.5

At the end of the document, following 9.2.5, add the following new Annexes $\mathrm{A}, \underline{\mathrm{B}}$ and $\underline{\mathrm{C}}$.

Annex A
 (normative)

Bit rates of $\mathbf{3 f c} / 4, f c, 3 f c / 2$ and $2 f c$ from PCD to PICC

A. 1 Modulation for bit rates of $\mathbf{3 f c} / 4, f c, 3 f c / 2$ and $2 f c$

For communication from PCD to PICC using bit rates of $3 \mathrm{fc} / 4, \mathrm{fc}, 3 \mathrm{fc} / 2$ and 2 fc information is encoded by PSK modulation of RF carrier of the operating field.

For bit rates of $3 f c / 4, f c, 3 f c / 2$ and $2 f c$, information is encoded by PSK modulation of the RF carrier. The RF carrier is phase modulated with a NP at each etu. For each bit rate, the length of an etu and the number of NPs are specified in Table A.1.

Table A. 1 - etu and \# of NPs

Bit rate	etu	\# of NP
$3 f c / 4$ (approximately $10,17 \mathrm{Mbit} / \mathrm{s})$	$4 / f c$	8
$f c$ (approximately $13,56 \mathrm{Mbit} / \mathrm{s})$	$4 / f c$	16
$3 f c / 2$ (approximately $20,34 \mathrm{Mbit} / \mathrm{s})$	$2 / f_{c}$	8
$2 f c(\sim 27,12 \mathrm{Mbit} / \mathrm{s})(\mathrm{Stan}$	darcdefcen.ai)	16

The difference between two consecutive NPSs is defined as EPI specified in Table A. 2 and illustrated in Figure A. 2.
https://standards.iteh.ai/catalog/standards/sist/0ee5df06-2a43-4e32-84a2-
58a930041e62/iso-iec-14443-2-2010-fdamd-5
Table A. 2 - EPI

Bit rate	EPI
$3 f c / 4$ (approximately 10,17	
Mbit/s)	

The difference between the angle of P_{H} and the angle of P_{L} defines the phase range PR as illustrated in Figure A.1.

The PCD and PICC shall respect the PR limits as specified in Table A. 3 and Table A.4.
Table A. 3 - PR for PCD transmission

Bit rate	Minimum PR	Maximum PR
$3 f c / 4,3 f c / 2$	54°	58°
$f c, 2 f c$	58°	62°

Table A. 4 - PR for PICC reception

Bit rate	Minimum PR	Maximum PR
$3 f c / 4,3 f c / 2$	52°	60°
$f c, 2 f c$	56°	64°

A.1.1 NP tolerances

Due to the limited bandwidth channel, the intended NP phase modulation is affected by inter symbol interference (ISI) resulting in an ACP at the end of each etu. The angle of the ACP is defined as AP. This is described in a constellation diagram with $I S I_{m}$ and $I S I_{d}$ as specified below and illustrated in Figure A.2.

https $/ / /$ standards.iteh.ai/catalog/standards/sist/0ee5df06-2a43-4e32-84a2-
Figure A. 1 - Nominal constêllation points ${ }^{4443-2-F i g u r e ~} \mathrm{~A}: 2$ - Actual constellation points

NOTE 1 NPs are indicated with small filled spots. ACPs are indicated with small circles.
NOTE 2 See Annex A for explanation on constellation diagrams. See Annex B for explanation on ISI.
L is the maximum distance of any two ACPs related to the same NP.
R is the signal amplitude.
ISI $_{d}$ is the rotation of all ACPs modulations related to one NP phase modulation.It is defined as the angle between the line through PH,PL and the line through any 2 ACPs with maximum distance related to the same NPV.

ISI $_{\mathrm{m}}$ is the ISI magnitude normalized to the EPI. $\mathrm{ISI}_{\mathrm{m}}=\arcsin (\mathrm{L} / \mathrm{R}) /$ EPI.The PCD and PICC shall respect ISI $_{\mathrm{m}}$ limits for all ACPs as a function of $\mathrm{ISI}_{\mathrm{d}}$ as specified in Table A.5, and Table A.6, and illustrated in Figure A. 3.

Table A. 5 - ISI $_{m}$ limits for PCD transmission

	Condition	Min	Max
$\mathbf{I S I}_{\mathbf{m}}$	$\operatorname{abs}\left(\mathrm{ISI}_{\mathrm{d}}\right) \leq 90^{\circ}$	0	$1.5-\mathrm{abs}\left(\mathrm{ISI}_{\mathrm{d}}\right) / 90^{\circ}$
	$\operatorname{abs}\left(\mathrm{ISI}_{\mathrm{d}}\right)>90^{\circ}$	0	0,5

Table A. 6 - ISI $_{\mathrm{m}}$ limits for PICC reception

	Condition	Min	Max
$\mathbf{I S I}_{\mathbf{m}}$	$\operatorname{abs}\left(\mathrm{ISI}_{d}\right) \leq 90^{\circ}$	0	$1.6-\mathrm{abs}\left(\mathrm{ISI}_{\mathrm{d}}\right) / 90^{\circ}$
	$\operatorname{abs}\left(\mathrm{ISI}_{\mathrm{d}}\right)>90^{\circ}$	0	0,6

Figure A. 3 - Maximum ISIm limits for PCD and PICC
(standards.iteh.ai)
NOTE 3 Future revisions of ISO/IEC 14443 and ISO/IEC 10373-6 may specify new NP tolerance values with corresponding test methods.
https://standards.iteh.ai/catalog/standards/sist/0ee5df06-2a43-4e32-84a2-

A.1.2 Phase noise
 58a930041e62/iso-iec-14443-2-2010-fdamd-5

APs may also vary randomly due to phase noise.
The instantaneous phase error caused by noise is defined as the difference between the AP and the NP of 0° of an unmodulated signal sampled at the end of each etu.The differential phase error is defined as the difference of two consecutive instantaneous phase errors.

The normalized differential phase noise is the rms value of the differential phase error divided by EPI.
The normalized differential phase noise shall be lower than 0,033 for PCD transmission and lower than 0,035 for PICC reception.

NOTE Future revisions of ISO/IEC 14443 and ISO/IEC 10373-6 may specify new phase noise values with corresponding test methods.

A. 2 Bit representation and coding for bit rates of $3 f c / 4, f c, 3 f c / 2$ and $2 f c$

For bit rates $3 f c / 4$ and $3 f c / 2$ binary information shall be transmitted from PCD to PICC in units of 8 logic levels, building an information symbol of 3 bits. The 8 logic levels are represented by 8 NPs. The formation of 3 bit symbols from Bytes is illustrated in Figure A.4.

Figure A.4 - Binary information from PCD to PICC transmission for bit rates $3 f c / 4$ and $3 f c / 2$

For bit rates $f c$ and $2 f c$ binary information shall be transmitted from PCD to PICC in units of 16 logic levels, building an information symbol of 4 bits. The 16 logic levels are represented by 16 NPs. The formation of 4 bit symbols from Bytes is illustrated in Figure A. 5 .

Figure A. 5 - Binary information from PCD to PICC transmission for bit rates $f c$ and $2 f c$
If the last transmitted symbol is incomplete, it shall be stuffed with one or two (0)b.
For end of communication, the PCD shall generate a sequence of 8 NPs of -180°. After the end of communication the PCD shall generate an unmodulated RFcarrier with a NP of 0°.

A.2.1 Bit representation andcoding for bit rates of $3 f c / 4$ and $3 f c / 2$

For start of communication the PCD (shall generate ansequence of 140 NPs starting with NP of etu \#1 as specified in Table AlZ.The phase of the unmodulated RFcarrierissdefined as $\mathrm{NP}=0^{\circ}$.

58a930041e62/iso-iec-14443-2-2010-fdamd-5

