

SLOVENSKI STANDARD SIST ISO 3290-2:2015

01-april-2015

Nadomešča:

SIST ISO 3290-2:2009

Kotalni ležaji - Kroglice - 2. del: Keramične kroglice

Rolling bearings - Balls - Part 2: Ceramic balls

iTeh STANDARD PREVIEW

Roulements - Billes - Partie 2: Billes de roulement en céramique (standards.iten.ai)

Ta slovenski standard je istoveten zst iso ISO-3290-2:2014

https://standards.iteh.ai/catalog/standards/sist/30c7fc56-7b9a-490c-bb98-

£9127899a10e/sist iso 3290 2 2015

ICS:

21.100.20 Kotalni ležaji Rolling bearings

SIST ISO 3290-2:2015 en,fr

SIST ISO 3290-2:2015

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 3290-2:2015

https://standards.iteh.ai/catalog/standards/sist/30c7fc56-7b9a-490c-bb98-f9127899a10e/sist-iso-3290-2-2015

SIST ISO 3290-2:2015

INTERNATIONAL STANDARD

ISO 3290-2

Second edition 2014-09-01

Rolling bearings — Balls —

Part 2: **Ceramic balls**

Roulements — Billes — Partie 2: Billes de roulement en céramique

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 3290-2:2015</u> https://standards.iteh.ai/catalog/standards/sist/30c7fc56-7b9a-490c-bb98-f9127899a10e/sist-iso-3290-2-2015

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 3290-2:2015</u> https://standards.iteh.ai/catalog/standards/sist/30c7fc56-7b9a-490c-bb98-f9127899a10e/sist-iso-3290-2-2015

COPYRIGHT PROTECTED DOCUMENT

© ISO 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents		Page
Forev	eword	iv
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Symbols	4
5	Requirements 5.1 Ball size	4
6	Material	5
7	Dimensions and tolerances7.1 General7.2 Shortened formats for nominal diameter identification	5
Anne	ex A (normative) Method for assessment of deviation from spherica	l form11
Anne	ex B (normative) Illustration of ball gauges and sorting principles	12
Anne	ex C (informative) Examples of defect types and methods of inspecti	on14
Bibli	iography iTeh STANDARD PREVIEW	15
	(standards.iteh.ai)	

SIST ISO 3290-2:2015

https://standards.iteh.ai/catalog/standards/sist/30c7fc56-7b9a-490c-bb98-f9127899a10e/sist-iso-3290-2-2015

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 4, Rolling bearings, Subcommittee SC 12, Ball bearings.

SIST ISO 3290-2:2015

This second edition cancels and replaces the first edition (ISO 329052:2008), which has been technically revised. \$\forall 127899a10e/sist-iso-3290-2-2015

ISO 3290 consists of the following parts, under the general title *Rolling bearings* — *Balls*:

- Part 1: Steel balls
- Part 2: Ceramic balls

Rolling bearings — Balls —

Part 2:

Ceramic balls

1 Scope

This part of ISO 3290 specifies requirements for finished silicon nitride balls for rolling bearings.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1132-1, Rolling bearings — Tolerances — Part 1: Terms and definitions

ISO 4288, Geometrical Product Specifications (GPS) — Surface texture: Profile method — Rules and procedures for the assessment of surface texture RD PREVIEW

ISO 5593, Rolling bearings — Vocabulary (Standards.iteh.ai)

ISO 12181-1, Geometrical product specifications (GPS) — Roundness — Part 1: Vocabulary and parameters of roundness — SIST ISO 3290-2:2015

ISO 15241, Rolling bearings — Symbols for physical quantities 150 and 15241, Rolling bearings — Symbols for physical quantities 150 and 150 an

ISO 26602, Fine ceramics (advanced ceramics, advanced technical ceramics) — Silicon nitride materials for rolling bearing balls

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 1132-1, ISO 5593, and the following apply.

3.1

ball gauge

amount by which the mean diameter of ball lot should differ from the nominal ball diameter, this amount being one of an established series

Note 1 to entry: Each ball gauge is a whole multiple of the ball gauge interval established for the ball grade in question.

Note 2 to entry: A ball gauge, in combination with the ball grade and nominal diameter, is considered as the most exact ball size specification to be used by a customer for ordering purposes.

[SOURCE: ISO 5593:1997, 05.04.09, modified — Note 1 and Note 2 to entry have been added.]

3.2

ball gauge interval

absolute difference of two consecutive ball gauges

3.3

ball grade

specific combination of dimensional, form, surface roughness, and sorting tolerances for balls

Note 1 to entry: Ball grade is identified by the letter G and a number, e.g. G 20.

[SOURCE: ISO 5593:1997, 05.04.08, modified — Note 1 to entry has been added.]

3.4

ball lot

definite quantity of balls manufactured under conditions presumed uniform and which is considered as an entity

[SOURCE: ISO 5593:1997, 05.04.05]

3.5

ball subgauge

amount of an established series of amounts, which is the nearest to the actual deviation from the ball gauge of a ball lot

Note 1 to entry: Each ball subgauge is a whole multiple of the ball subgauge interval established for the ball grade in question.

Note 2 to entry: The ball subgauge, in combination with the nominal ball diameter and the ball gauge, is used by ball manufacturers to denote the mean diameter of a ball lot and is not generally used by customers for ordering purposes.

[SOURCE: ISO 5593:1997, 05.04.11, modified — Notes 1 and 2 to entry have been added.]

3.6

ball subgauge interval

absolute difference of two consecutive ball subgauges 3290-2:2015

https://standards.iteh.ai/catalog/standards/sist/30c7fc56-7b9a-490c-bb98-

(standards.iteh.ai)

3.7 f9127899a10e/sist-iso-3290-2-2015

deviation from spherical ball surface

various types of deviation from the perfect spherical ball surface, uniformly or non-uniformly distributed and repeated around the ball surface

Note 1 to entry: The deviations to which limits can be attributed to are

- deviation from spherical form,
- surface defect,
- surface roughness, and
- waviness.

3.7.1

deviation from spherical form

radial distance between the smallest circumscribed sphere and the greatest inscribed sphere, with their centres common to the least squares sphere centre

Note 1 to entry: This definition supersedes ISO 5593:1997, 05.06.03.

3.7.2

surface defect

element, irregularity, or group of elements and irregularities of the real surface, unintentionally or accidentally caused during manufacture, storage, handling, or use of the surface

Note 1 to entry: These types of element or irregularity differ considerably from those constituting the surface roughness and are not considered during the measurement of the surface roughness.

Note 2 to entry: The limits for surface defects are not specified in this part of ISO 3290.

3.7.3

surface roughness

surface irregularities with relatively small spacings, which usually include irregularities resulting from the method of manufacture being used and/or other influences

Note 1 to entry: These irregularities are considered within the limits that are conventionally defined, e.g. within the limits of the sampling length.

3.7.4

waviness

surface irregularities of random or periodical deviation from the ideal spherical form

Note 1 to entry: Waviness shall be evaluated by default as velocity amplitude.

Note 2 to entry: In practice, the waviness components are separated from the real surface by a waviness analyser (filters).

3.8

deviation of a ball lot from ball gauge

difference between the mean diameter of a ball lot and the sum of the nominal ball diameter and the ball gauge

[SOURCE: ISO 5593:1997, 05.04.10]

3.9

hardness

<rolling bearings> measure of resistance to penetration as determined by a specific test method

Note 1 to entry: For ceramics balls, such a test method is the Vickers hardness test.

3.10

mean ball diameter

SIST ISO 3290-2:2015

arithmetical mean of the largest and the smallest of the single diameters of a ball

[SOURCE: ISO 5593:1997, 05.04.03]

3.11

mean diameter of ball lot

arithmetical mean of the mean diameters of the largest ball and the smallest ball in a ball lot

[SOURCE: ISO 5593:1997, 05.04.06]

3.12

nominal ball diameter

diameter value which is used for the general identification of a ball size

[SOURCE: ISO 5593:1997, 05.04.01]

3.13

single ball diameter

distance between two parallel planes tangential to the actual surface of a ball

[SOURCE: ISO 5593:1997, 05.04.02]

3.14

variation of ball diameter

difference between the largest and the smallest of the single diameters of a ball

[SOURCE: ISO 5593:1997, 05.04.04]

3.15

variation of ball lot diameter

difference between the mean diameters of the largest ball and the smallest ball in a ball lot

[SOURCE: ISO 5593:1997, 05.04.07]

Symbols

For the purposes of this document, the symbols given in ISO 15241 and the following apply.

The symbols (except those for tolerances) and the values given in Table 1, Table 2, and Table 3 denote nominal dimensions, unless specified otherwise.

nominal ball diameter D_{W} mean ball diameter $D_{\rm wm}$ mean diameter of ball lot D_{wmL} D_{ws} single ball diameter G ball grade Ra arithmetical mean deviation of surface texture (see ISO 4287[1]) S ball gauge iTeh STANDARD PREVIEW variation of ball lot diameter (standards.iteh.ai) $V_{D\mathrm{wL}}$ variation of ball diameter V_{Dws} SIST ISO 3290-2:2015 $\label{lem:deviation} \textbf{deviation from spherical form standards.} it catalog/standards/sist/30c7fc56-7b9a-490c-bb98-490c-bb9$ Δ_{RSw}

deviation of a ball lot from a ball gauge for 127899a10e/sist-iso-3290-2-2015 $\Delta_{\mathcal{S}}$

NOTE $\Delta_S = D_{\text{wmL}} - (D_{\text{w}} + S)$

Requirements 5

5.1 Ball size

The preferred nominal ball diameters are given in Table 1 and, where applicable, the corresponding inch sizes are given for reference purposes only.

Quality of geometry and surface 5.2

Requirements for:

- variation of ball diameter (see Table 2);
- deviation from spherical form, (see <u>Table 2</u>);
- waviness (see Note 1);
- surface roughness (see <a>Table 2);
- surface appearance (see Note 2 and Note 3).

Measurement of surface roughness shall be carried out in accordance with ISO 4288.

 $NOTE\,1$ Limits and measuring methods for waviness are subject to agreement between the customer and supplier.

NOTE 2 Local inhomogeneities in colour, densification, pressing defects, snowflakes, etc. and cracks inherent to the material and its processing are subject to agreement between the customer and supplier.

NOTE 3 Local defects originating from machining and handling are subject to agreement between the customer and supplier.

5.3 Sorting accuracy and ball gauges

Table 3 comprises the applicable values for

- variation of ball lot diameter,
- gauge interval,
- preferred gauges,
- subgauge interval, and
- subgauges.

6 Material iTeh STANDARD PREVIEW

The balls shall be manufactured from silicon nitride material in accordance with ISO 26602.

7 Dimensions and tolerances SIST ISO 3290-2:2015

https://standards.iteh.ai/catalog/standards/sist/30c7fc56-7b9a-490c-bb98-

7.1 General f9127899a10e/sist-iso-3290-2-2015

The preferred nominal ball diameters are given in <u>Table 1</u>. Tolerances for form and surface roughness are given in <u>Table 2</u>. Sorting tolerances and ball gauges are given in <u>Table 3</u>.

7.2 Shortened formats for nominal diameter identification

7.2.1 Metric option

For purchasing and other general administrative purposes, some users optionally identify nominal metric ball diameters with only three digits following the decimal comma.

This option does not identify the diameter with adequate precision for manufacturing purposes and the full long diameter values given in Table 1 with four or five digits following the decimal comma to precisely identify the size shall always be used for gauge and subgauge sorting purposes to avoid any possibility of ambiguity.

7.2.2 Imperial option

For purchasing and other general administrative purposes, some users optionally continue to identify nominal ball diameters with imperial exact fraction or decimal sizes which carry no risk of ambiguity. Metric equivalents are sometimes also shown but not used as the primary administrative identifier.

If this option is applied, gauge and subgauge diameter tolerances in micrometres shall be added to the imperial nominal reference size or its exact metric equivalent with four or five digits following the decimal comma according to Table 1 of this part of ISO 3290, for sorting purposes during manufacturing procedures.