INTERNATIONAL STANDARD

ISO/ASTM 51631

Third edition 2013-04-15

Practice for use of calorimetric dosimetry systems for electron beam dose measurements and routine dosimetry system calibration

iTeh STANDARD PREVIEW

Pratique de l'utilisation des systèmes dosimétriques calorimétriques pour des mesures de dose délivrée par un faisceau d'électrons et pour l'étalonnage de dosimètres

https://standards.iteh.ai/catalog/standards/sist/3721b552-cbf7-49e1-8da4-9f9c4c19af40/iso-astm-51631-2013

ISO/ASTM 51631:2013(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. Neither the ISO Central Secretariat nor ASTM International accepts any liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies and ASTM members. In the unlikely event that a problem relating to it is found, please inform the ISO Central Secretariat or ASTM International at the addresses given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/ASTM 51631:2013 https://standards.iteh.ai/catalog/standards/sist/3721b552-cbf7-49e1-8da4-9f9c4c19af40/iso-astm-51631-2013

© ISO/ASTM International 2013

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. In the United States, such requests should be sent to ASTM International.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in the United States

ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, USA Tel. +610 832 9634 Fax +610 832 9635 E-mail khooper@astm.org Web www.astm.org

Contents	Page
1 Scope	
2 Referenced documents	1
3 Terminology	
3 Terminology 4 Significance and use	
5 Interferences	
6 Apparatus	3
7 Calibration Procedures 8 Dose measurement procedures	
9 Calibration of other dosimetry systems	7
10 Documentation	
11 Measurement uncertainty	
12 Keywords	
Annexes	
Bibliography	

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/ASTM 51631:2013 https://standards.iteh.ai/catalog/standards/sist/3721b552-cbf7-49e1-8da4-9f9c4c19af40/iso-astm-51631-2013

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

ASTM International is one of the world's largest voluntary standards development organizations with global participation from affected stakeholders. ASTM technical committees follow rigorous due process balloting procedures.

A pilot project between ISO and ASTM International has been formed to develop and maintain a group of ISO/ASTM radiation processing dosimetry standards. Under this pilot project, ASTM Committee E61, Radiation Processing, is responsible for the development and maintenance of these dosimetry standards with unrestricted participation and input from appropriate ISO member bodies.

ISO/ASTM 51631:2013

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. Neither ISO nor ASTM International shall be held responsible for identifying any or all such patent rights.

International Standard ISO/ASTM 51631 was developed by ASTM Committee E61, Radiation Processing, through Subcommittee E61.02, Dosimetry Systems, and by Technical Committee ISO/TC 85, Nuclear energy, nuclear technologies and radiological protection.

Standard Practice for Use of Calorimetric Dosimetry Systems for Electron Beam **Dose Measurements and Routine Dosimetry System** Calibration¹

This standard is issued under the fixed designation ISO/ASTM 51631; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision.

1. Scope

- 1.1 This practice covers the preparation and use of semiadiabatic calorimetric dosimetry systems for measurement of absorbed dose and for calibration of routine dosimetry systems when irradiated with electrons for radiation processing applications. The calorimeters are either transported by a conveyor past a scanned electron beam or are stationary in a broadened beam.
- 1.2 This document is one of a set of standards that provides recommendations for properly implementing dosimetry in radiation processing, and describes a means of achieving compliance with the requirements of ASTM Practice E2628 for a calorimetric dosimetry system. It is intended to be read in conjunction with ASTM Practice E2628.
- as Type II dosimeters on the basis of the complex effect of influence quantities. See ASTM Practice E2628.
- 1.4 This practice applies to electron beams in the energy 51631.2 (Bremsstrahlung) Irradiation Facilities for Food Processrange from 1.5 to 12 MeV. https://standards.iteh.ai/catalog/standards/sist/3ingl b552-cbf7-49e1-8da4-
- 1.5 The absorbed dose range depends on the absorbing astm-516492 Practice for Dosimetry in an Electron Beam Facility material and the irradiation and measurement conditions. Minimum dose is approximately 100 Gy and maximum dose is approximately 50 kGy.
- 1.6 The average absorbed-dose rate range shall generally be greater than 10 Gy·s⁻¹.
- 1.7 The temperature range for use of these calorimetric dosimetry systems depends on the thermal resistance of the materials, on the calibrated range of the temperature sensor, and on the sensitivity of the measurement device.
- 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:²

E170 Terminology Relating to Radiation Measurements and Dosimetry

E666 Practice for Calculating Absorbed Dose From Gamma or X Radiation

E668 Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices

E2628 Practice for Dosimetry in Radiation Processing

E2701 Guide for Performance Characterization of Dosimeters and Dosimetry Systems for Use in Radiation Process-

2.2 ISO/ASTM Standards:²

1.3 The calorimeters described in this practice are classified 5 51261 Practice for Calibration of Routine Dosimetry Systems II described on the basis of the complex effect of the processing. tems for Radiation Processing

51431 Practice for Dosimetry in Electron and X-Ray

- for Radiation Processing at Energies Between 300 keV and 25 MeV
- 51707 Guide for Estimating Uncertainties in Dosimetry for Radiation Processing
- 2.3 International Commission on Radiation Units and Measurements (ICRU) Reports:³

ICRU Report 34 The Dosimetry of Pulsed Radiation

ICRU Report 35 Radiation Dosimetry: Electron Beams with Energies Between 1 and 50 MeV

ICRU Report 37 Stopping Powers for Electrons and Posi-

ICRU Report 44 Tissue Substitutes in Radiation Dosimetry and Measurements

ICRU Report 80 Dosimetry Systems for use in Radiation Processing

¹ This practice is under the jurisdiction of ASTM Committee E61 on Radiation Processing and is the direct responsibility of Subcommittee E61.02 on Dosimetry Systems, and is also under the jurisdiction of ISO/TC 85/WG 3.

Current edition approved Aug. 16, 2012. Published April 2013. Originally published as E 1631 - 94. ASTM E $1631 - 96^{\epsilon 1}$ was adopted by ISO in 1998 with the intermediate designation ISO 15568:1998(E). The present International Standard ISO/ASTM 51631:2013(E) replaces ISO 15568 and is a major revision of the last previous edition ISO/ASTM 51631-2003(E).

² For referenced ASTM and ISO/ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

³ Available from the Commission on Radiation Units and Measurements, 7910 Woodmont Ave., Suite 800, Bethesda, MD 20814, U.S.A.

ICRU Report 85a Fundamental Quantities and Units for Ionizing Radiation

2.4 Joint Committee for Guides in Metrology (JCGM) Reports:⁴

JCGM 100:2008, GUM 1995, with minor corrections, Evaluation of measurement data – Guide to the Expression of Uncertainty in Measurement

3. Terminology

- 3.1 Definitions:
- 3.1.1 primary-standard dosimetry system—dosimetry system that is designated or widely acknowledged as having the highest metrological qualities and whose value is accepted without reference to other standards of the same quantity.
- 3.1.2 reference standard dosimetry system—dosimetry system, generally having the highest metrological quality available at a given location or in a given organization, from which measurements made there are derived.
- 3.1.3 transfer standard dosimetry system—dosimetry system used as an intermediary to calibrate other dosimetry systems.
- 3.1.4 *type II dosimeter*—dosimeter, the response of which is affected by influence quantities in a complex way that cannot practically be expressed in terms of independent correction factors.
 - 3.2 Definitions of Terms Specific to This Standard:
 - 3.2.1 adiabatic—no heat exchange with the surroundings.
- 3.2.2 *calorimeter*—assembly consisting of calorimetric ated by an electron beam. Diff body (absorber), thermal insulation, and temperature sensor M 546ed, 264f the response is usuall with wiring. https://standards.iteh.ai/catalog/standardwater/3721b552-cbf7-49e1-8da4-
- 3.2.3 calorimetric body—mass of material absorbing cadia/iso-astm-51631-2013 Note 2—The calorimetric bodies of the calorimeters described in this tion energy and whose temperature is measured.
- 3.2.4 calorimetric dosimetry system—dosimetry system consisting of calorimeter, measurement instruments and their associated reference standards, and procedures for the system's use.
- 3.2.5 *endothermic reaction*—chemical reaction that consumes energy.
- 3.2.6 *exothermic reaction*—chemical reaction that releases energy.
- 3.2.7 heat defect (thermal defect)—amount of energy released or consumed by chemical reactions caused by the absorption of radiation energy.
- 3.2.8 *specific heat capacity*—amount of energy required to raise 1 kg of material by the temperature of 1 K.
- 3.2.9 *thermistor*—electrical resistor with a well-defined relationship between resistance and temperature.
- 3.2.10 *thermocouple*—junction of two metals producing an electrical voltage with a well-defined relationship to junction temperature.
- 3.3 Definitions of other terms used in this standard that pertain to radiation measurement and dosimetry may be found in ASTM Terminology E170. Definitions in E170 are compat-

⁴ Document produced by Working Group 1 of the Joint Committee for Guides in Metrology (JCGM/WG 1). Available free of charge at the BIPM website (http://www.bipm.org).

ible with ICRU Report 85a; that document, therefore, may be used as an alternative reference.

4. Significance and use

4.1 This practice is applicable to the use of calorimetric dosimetry systems for the measurement of absorbed dose in electron beams, the qualification of electron irradiation facilities, periodic checks of operating parameters of electron irradiation facilities, and calibration of other dosimetry systems in electron beams. Calorimetric dosimetry systems are most suitable for dose measurement at electron accelerators utilizing conveyor systems for transport of product during irradiation.

Note 1—For additional information on calorimetric dosimetry system operation and use, see ICRU Report 80. For additional information on the use of dosimetry in electron accelerator facilities, see ISO/ASTM Practices 51431 and 51649, and ICRU Reports 34 and 35, and Refs (1-3).⁵

- 4.2 The calorimetric dosimetry systems described in this practice are not primary standard dosimetry systems. The calorimeters are classified as Type II dosimeters (ASTM E2628). They may be used as internal standards at an electron beam irradiation facility, including being used as transfer standard dosimetry systems for calibration of other dosimetry systems, or they may be used as routine dosimeters. The calorimetric dosimetry systems are calibrated by comparison with transfer-standard dosimeters.
- 4.3 The dose measurement is based on the measurement of the temperature rise in an absorber (calorimetric body) irradiated by an electron beam. Different absorbing materials are 5used, 2but the response is usually defined in terms of dose to arwater/3721b552-cbf7-49e1-8da4-
- Note 2—The calorimetric bodies of the calorimeters described in this practice are made from low atomic number materials. The electron fluences within these calorimetric bodies are almost independent of energy when irradiated with electron beams of 1.5 MeV or higher, and the mass collision stopping powers are approximately the same for these materials.
- 4.4 The absorbed dose in other materials irradiated under equivalent conditions may be calculated. Procedures for making such calculations are given in ASTM Practices E666 and E668, and Ref (1).
- 4.4.1 Calorimeters for use at industrial electron accelerators have been constructed using graphite, polystyrene or a Petri dish filled with water as the calorimetric body (4-10). The thickness of the calorimetric body shall be less than the range of the electrons.
- 4.4.2 Polymeric materials other than polystyrene may also be used for calorimetric measurements. Polystyrene is used because it is known to be resistant to radiation (11) and because almost no exo- or endothermic reactions take place (12).

5. Interferences

5.1 Extrapolation—The calorimetric dosimetry systems described in this practice are not adiabatic, because of the exchange of heat with the surroundings or within the calorimeter assembly. The maximum temperature reached by the

⁵ The boldface numbers in parentheses refer to the bibliography at the end of this practice.

calorimetric body is different from the temperature that would have been reached in the absence of that heat exchange. The temperature drifts before and after irradiation are extrapolated to the midpoint of the irradiation period in order to determine the true temperature increase due to the absorbed dose.

- 5.2 Heat Defect—Chemical reactions in irradiated material (resulting in what is called the heat defect or thermal defect) may be endo- or exothermic and may lead to measurable temperature changes (3).
- 5.3 Specific Heat Capacity—The specific heat capacity of some materials used as a calorimetric body may change with accumulated absorbed dose, thereby affecting the response of the calorimeters. This is notably the case for polymers, such as polystyrene, and it will therefore be necessary to recalibrate calorimetric dosimetry systems at intervals that will depend on the total accumulated dose.
- 5.4 Influence Quantities—The response of the calorimetric dosimetry systems to absorbed dose does not depend on environmental relative humidity and temperature.
- 5.5 Temperature Effects from Accelerator Structure—The calorimeters are often irradiated on a conveyor used for passing products and samples through the irradiation zone. Radiated heat from the mechanical structures of the irradiation facility and from the conveyor may contribute to the measured temperature increase in the calorimeters.
- are obtained when the calorimeters are in thermal equilibrium with their surroundings before irradiation. ISO/ASTM
- 5.7 Other Materials—The temperature sensors, wires, setc.ard of the calorimeter represent foreign materials, which may influence the temperature rise of the calorimetric body. These components should be as small as possible.
- 5.8 Dose Gradients—Dose gradients will exist within the calorimetric body when it is irradiated with electrons. These gradients must be taken into account, for example, when other dosimeters are calibrated by comparison with calorimetric dosimetry systems.

6. Apparatus

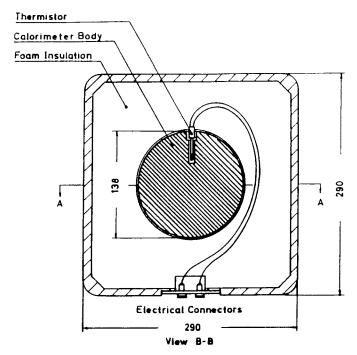
- 6.1 A Typical Graphite Calorimeter is a disc of graphite placed in a thermally-insulating material such as foamed plastic (4-6). A calibrated thermistor or thermocouple is embedded inside the disc. Some typical examples of graphite disc thicknesses and masses are listed in Table 1 (2).
- 6.2 A Typical Water Calorimeter is a sealed polystyrene Petri dish filled with water and placed in thermally-insulating foamed plastic (4). A calibrated temperature sensor (thermistor) is placed through the side of the dish into the water. The shape and size of the water calorimeter can be similar to the shape and size of the polystyrene calorimeter (see 6.3).
- 6.3 A Typical Polystyrene Calorimeter is a polystyrene disc placed in thermally-insulating foamed plastic. A calibrated thermistor or thermocouple is imbedded inside the disc. The dimension of the polystyrene disc may be similar to that of the graphite and water calorimeters (9). See Fig. 1 as an example of a 10 MeV-calorimeter. Fig. 2 shows an example of a polystyrene calorimeter designed for use at 1.5 to 4 MeV electron accelerators.
- 6.4 The thickness of the calorimetric body should be less than the range of the irradiating electrons, typically not exceeding 1/3 of the range of the electrons. That will limit the variation of the dose gradients within the calorimetric body.
- 6.5 Radiation-resistant components should be used for the 5.6 Thermal Equilibrium—The most reproducible results

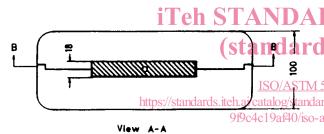
 This also applies to investigate the calorimeter that are exposed to the electron beam.
 - 6.6 Good thermal contact must exist between the temperature sensor and the calorimetric body. For graphite and polystyrene calorimeters, this can be assured by adding a small amount of heat-conducting compound when mounting the temperature sensor.
 - 6.7 Measurement—The response of the calorimeters is the temperature rise of the calorimetric body. This temperature rise is usually registered by thermistors or thermocouples.
 - 6.7.1 *Thermistor*—A high-precision ohm-meter can be used for measurement of thermistor resistance. The meter should have a reproducibility of better than ± 0.1 % and an accuracy

TABLE 1 Thickness and size of several graphite calorimetric bodies designed at NIST for use at specific electron energies

Electron Energy MeV –	Electron		Cal	lorimeter Disc (30 mm diam	eter)
	in Graphite ^A - density: 1.7 g cm ⁻³	Thickness ^B		Mass, g	
	g cm ⁻²	cm	g cm ⁻²	cm	
4	2.32	1.36	0.84	0.49	5.9
5	2.91	1.71	1.05	0.62	7.5
6	3.48	2.05	1.25	0.74	8.9
8	4.59	2.70	1.65	0.97	11.7
10	5.66	3.33	2.04	1.20	14.4
11	6.17	3.63	2.22	1.31	15.7
12	6.68	3.93	2.40	1.41	16.9

A This is the continuous-slowing-down approximation (CSDA) range roof electrons for a broad beam incident on a semi-infinite absorber. It is calculated from: $r_0 = \int_0^{E(0)} (1 / (S/\rho)_{tot}) dE$


= the primary electron energy, and


= the total mass stopping power at a given electron energy (1).

 $^{^{\}it B}$ The thicknesses specified are equal to 0.36 $r_{\it o}$

Note-All dimensions are in mm.

FIG. 1 Example of a polystyrene calorimeter used for routine measurements at a 10-MeV industrial electron accelerator

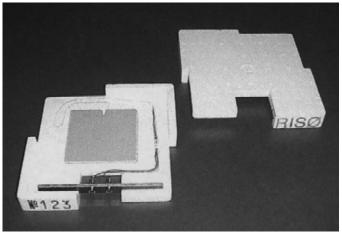


FIG. 2 Example of a polystyrene calorimeter for use at 1.5 to 4 MeV industrial electron accelerators (13)

of better than ± 0.2 %. It should preferably be equipped for four-wire type resistance measurements, especially if the thermistor resistance is less than 10 k Ω . With the four-wire measurement technique, the effects of resistance in the measurement wires and electrical contacts are minimized.

6.7.2 Other appropriate instrumentation may be used for the thermistor resistance measurement, for example, a resistance bridge or commercially calibrated thermistor readers (5). It is important for both ohm-meters and resistance bridge measurements to minimize the dissipated power in the thermistor, preferably below 0.1 mW.

6.7.3 *Thermocouple*—A high-precision digital voltmeter, or commercial reader (2), can be used for the measurement. The reproducibility of the voltmeter should be better than 0.1 μ V, and an accuracy of better than ± 0.2 %.

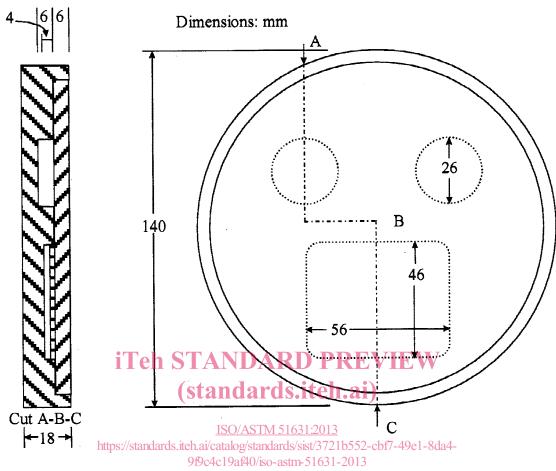
6.7.4 *Suppliers*—Some commercial suppliers of calorimetric dosimetry systems are listed in Annex A2.

7. Calibration procedures

7.1 Prior to use, the calorimetric dosimetry system (consisting of calorimeter and measurement instruments) shall be calibrated in accordance with the user's documented procedure that specifies details of the calibration process and quality assurance requirements. This calibration process shall be repeated at regular intervals to ensure that the accuracy of the absorbed dose measurement is maintained within required limits. Calibration methods are described in ISO/ASTM Guide 51261.

systems may be calibrated by comparison with transfer standard dosimetry systems from an accredited calibration laboratory by irradiating the calorimeter(s) and transfer-standard dosimeters sequentially (or simultaneously) at an electron accelerator. The radiation field over the cross-sectional area of the calorimetric body shall be uniform over the time required to irradiate the calorimeters and the transfer- standard dosimeters. Any non-uniformity should be taken into account.

7.3 It must be assured that the transfer-standard dosimeters and the calorimeters are irradiated to the same dose. Specially designed absorbers are needed for irradiation of the transfer-standard dosimeters, see for example Fig. 3.


7.4 The specific heat capacities of polystyrene and of graphite are functions of temperature, while the specific heat capacity of water is almost constant within the temperature range normally employed in electron beam calorimetry. The calibration curves of the calorimetric dosimetry systems are therefore expected to be functions of the average temperature of the calorimetric body (see Note 3).

7.4.1 For graphite calorimetric dosimetry systems, the calibration curve may take the following form:

$$Dose = (T_2 - \ T_1 \ - \ T_a) \cdot c_G \cdot (S_{ell\rho}) w \ / \ (S_{ell\rho})_G \cdot k$$

where:

Note-All dimensions are in mm.

Alanine transfer standard dosimeters in cylindrical flat holders (diameter 25 mm, thickness 6 mm) to be placed in the round cut-outs. Routine dosimeters (thin film dosimeters) to be placed in rectangular cut-outs. The centres of both dosimeters are placed in the same depth in the absorber.

FIG. 3 Absorber for irradiation at 10 MeV electron accelerator of routine and transfer-standard dosimeters (10). Material: Polystyrene

 T_{I} = temperature before irradiation, T_{I} = temperature after irradiation, T_{I} = temperature after irradiation, T_{I} = temperature rise from irradiation facility components, T_{I} = specific heat capacity of graphite, T_{I} = are the electronic mass stopping powers of water and graphite, respectively, and T_{I} = temperature before irradiation, T_{I} = temperature after irradiation, T_{I} = temperature afte

Note 3—Repeated measurements of specific heat of various types of graphite have been carried out over the range of 0 to 50°C, indicating a value for the specific heat capacity of graphite $c_G(J \cdot kg^{-1} \cdot {}^{\circ}C^{-1}) = 644.2 + 2.86 T$, where T is the mean temperature (°C) of the graphite. This value must, however, not be considered a universal value (6).

7.4.2 For polystyrene calorimetric dosimetry systems, the calibration curve may take the following form:

$$Dose = (T_2 - T_1 - T_a) \cdot F(T) \cdot k$$

where:

 T_I = temperature before irradiation,

 T_2 = temperature after irradiation,

 T_a = temperature rise from irradiation facility components,

F(T) = function representing specific heat capacity of polystyrene, and

k = calibration constant to be determined during calibration verification.

Note 4—The function F(T) takes the form $F(T) = C1 + C2 \cdot T$, where C1 and C2 are constants and T is the mean temperature (°C) of the calorimetric body. The values of C1 and C2 depend on the type of polystyrene used for making the calorimetric absorber.

Note $5-T_a$ can be determined by passing a calorimeter though the irradiation zone shortly after the electron beam has been switched off, and measuring the temperature increase of the calorimetric absorber.

Note 6—The sensitivity of water calorimetric dosimetry systems is approximately 3.4 kGy \cdot °C⁻¹ and for polystyrene calorimetric dosimetry systems it is approximately 1.4 kGy \cdot °C⁻¹. For graphite calorimetric dosimetry systems, the sensivity is approximately 0.75 kGy \cdot °C⁻¹.

7.5 Calibration of all types of calorimetric dosimetry systems used as routine dosimetry systems should be checked by