

SLOVENSKI STANDARD SIST EN 62276:2017

01-februar-2017

Nadomešča:

SIST EN 62276:2013

Enokristalne rezine za površinske zvočnovalovne naprave (SAW) - Specifikacije in merilne metode (IEC 62276:2016)

Single crystal wafers for surface acoustic wave (SAW) device applications - Specifications and measuring methods (IEC 62276:2016)

Einkristall-Wafer für Oberflächenwellen-(OFW-)Bauelemente - Festlegungen und Messverfahren (IEC 62276:2016) (Standards.iteh.ai)

Tranches monocristallines pour applications utilisant/des dispositifs à ondes acoustiques de surface (OAS) - Spécifications et méthodes de mesure (IEC462276:2016)

4db473ef5fb4/sist-en-62276-2017

Ta slovenski standard je istoveten z: EN 62276:2016

ICS:

31.140 Piezoelektrične naprave Piezoelectric devices

SIST EN 62276:2017 en

SIST EN 62276:2017

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 62276:2017

EUROPEAN STANDARD NORME EUROPÉENNE

EUROPÄISCHE NORM

EN 62276

December 2016

ICS 31.140

Supersedes EN 62276:2013

English Version

Single crystal wafers for surface acoustic wave (SAW) device applications - Specifications and measuring methods (IEC 62276:2016)

Tranches monocristallines pour applications utilisant des dispositifs à ondes acoustiques de surface (OAS) - Spécifications et méthodes de mesure (IEC 62276:2016)

Einkristall-Wafer für Oberflächenwellen-(OFW-)Bauelemente - Festlegungen und Messverfahren (IEC 62276:2016)

This European Standard was approved by CENELEC on 2016-11-28. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

SIST EN 62276:2017

CENELEC members are the national electrotechnical committees of Austrial Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

EN 62276:2016

European foreword

The text of document 49/1144/CDV, future edition 3 of IEC 62276, prepared by IEC/TC 49 "Piezoelectric, dielectric and electrostatic devices and associated materials for frequency control, selection and detection" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 62276:2016.

The following dates are fixed:

•	latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	2017-08-28
•	latest date by which the national standards conflicting with the	(dow)	2019-11-28

This document supersedes EN 62276:2013.

document have to be withdrawn

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 62276:2016 was approved by CENELEC as a European Standard without any modification. (standards.iteh.ai)

IEC 61019-1

NOTE Harmonized as EN 61019-1.

SIST EN 62276:2017

IEC 61019-2 https://standards.itehnotealog/famonized as EN 61019-2:7cd-4587-a7f3-4db473ef5fb4/sist-en-62276-2017

IEC 61019-3 NOTE Harmonized as EN 61019-3.

ISO 4287:1997 NOTE Harmonized as EN ISO 4287:1998.

EN 62276:2016

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu.

Publication	Year	Title	EN/HD	Year
IEC 60758	2016	Synthetic Quartz Crystal - Specifications and guidelines for use	EN 60758	2016
ISO 2859-1	1989	Sampling procedures for inspection by attributes; part_1: sampling plans indexed by acceptable quality level (AQL) for lot-by lot inspection		-

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 62276:2017

SIST EN 62276:2017

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 62276:2017

IEC 62276

Edition 3.0 2016-10

INTERNATIONAL STANDARD

Single crystal wafers for surface acoustic wave (SAW) device applications – Specifications and measuring methods iteh.ai)

<u>SIST EN 62276:2017</u> https://standards.iteh.ai/catalog/standards/sist/8e8b9b63-37cd-4587-a7f3-4db473ef5fb4/sist-en-62276-2017

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 31.140 ISBN 978-2-8322-3691-8

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	REWORD)	5
IN	TRODUCT	TON	7
1	Scope		8
2	Normati	ve references	8
3	Terms a	nd definitions	8
	3.1 Si	ngle crystals for SAW wafer	8
		rms and definitions related to LN and LT crystals	
	3.3 Te	rms and definitions related to all crystals	9
		atness	
	3.5 De	finitions of appearance defects	12
	3.6 Ot	her terms and definitions	13
4	Require	ments	14
	4.1 Ma	aterial specification	14
	4.1.1	Synthetic quartz crystal	14
	4.1.2	LN	15
	4.1.3	LT	
	4.1.4	LBO, LGSafer specifications STANDARD PREVIEW	15
	4.2 W		
	4.2.1	General	15
	4.2.2		
	4.2.3	Thickness and tolerance	15
	4.2.4	Orientation:flats.itch.ai/catalog/standards/sist/8e8b9b63-37cd-4587-a7f3-	15
	4.2.5	Secondary flat4db473ef5fb4/sist-en-62276-2017.	
	4.2.6	Back surface roughness	
	4.2.7	Warp	
	4.2.8	TV5 or TTV	
	4.2.9	Front (propagation) surface finish	
	4.2.10	Front surface defects	
	4.2.11	Surface orientation tolerance	
	4.2.12	Inclusions	
	4.2.13	Etch channel number and position of seed for quartz wafer	
	4.2.14	Bevel	
	4.2.15 4.2.16	Curie temperature and tolerance	
	4.2.16	Lattice constant Bulk resistivity (conductivity) for reduced LN and LT	
5		g plang plan	
J	•		
		eneral	
		Impling frequency	
		Impling frequencyspection of whole population	
6		thodsthods	
U			
		ameterioknooo	
		ickness mension of OF	
		ientation of OF	
		/5	
	0.0 11	U	۷2

6.6	Warp	20
6.7	TTV	20
6.8	Front surface defects	20
6.9	Inclusions	20
6.10	Back surface roughness	20
6.11	Orientation	20
6.12	Curie temperature	20
6.13	Lattice constant	20
6.14	Bulk resistivity	21
7 Iden	tification, labelling, packaging, delivery condition	21
7.1	Packaging	21
7.2	Labelling and identification	21
7.3	Delivery condition	21
8 Mea	surement of Curie temperature	21
8.1	General	21
8.2	DTA method	21
8.3	Dielectric constant method	22
9 Mea	surement of lattice constant (Bond method)	23
	surement of face angle by X-ray	
10.1		
10.1	Measurement principle	25
10.2	Measuring surface orientation of wafer, it.e.h. ai.)	
10.3	Measuring OF flat orientation	
10.4	Typical wafer orientations and reference planes	
	surement of bulk resistivity/catalog/standards/sist/8e8b9b63-37cd-4587-a7f3-	
11.1	4db473ef5fb4/sist-en-62276-2017 Resistance measurement of a wafer	20
11.1	Electrode	
11.2	Bulk resistivity	
	al inspections – Front surface inspection method	
	·	21
	(normative) Expression using Euler angle description for piezoelectric single	29
A.1	Wafer orientation using Euler angle description	
	(informative) Manufacturing process for SAW wafers	
B.1	Crystal growth methods	
B.1.	3	
B.1.	3	
B.2	Standard mechanical wafer manufacturing	
B.2.		
B.2.	, , ,	
B.2.	3	
B.2.	3	
B.2.		
B.2.		
B.2.		
Bibliogra	phy	38
Figure 1	 Wafer sketch and measurement points for TV5 determination 	10
Figure 2	– Schematic diagram of TTV	11

Figure 3 – Schematic diagram of warp	11
Figure 4 – Schematic diagram of Sori	11
Figure 5 – Example of site distribution for LTV measurement	12
Figure 6 – LTV value of each site	12
Figure 7 – Schematic of a DTA system	22
Figure 8 – Schematic of a dielectric constant measurement system	22
Figure 9 – The Bond method	24
Figure 10 – Measurement method by X-ray	24
Figure 11 – Relationship between cut angle and lattice planes	25
Figure 12 – Measuring circuit	26
Figure 13 – Resistance measuring equipment	26
Figure 14 – Shape of electrode	27
Figure A.1 – Definition of Euler angles to rotate coordinate system (X, Y, Z) onto (x_1, x_2, x_3)	29
Figure A.2 – SAW wafer coordinate system	30
Figure A.3 – Relationship between the crystal axes, Euler angles, and SAW orientation for some wafer orientations	31
Figure B.1 – Czochralski crystal growth method	32
Figure B.2 – Example of non-uniformity in crystals grown from different starting melt compositions	34
Higure B.3 – Schematic of a Vertical Bridgman furnace and example of temperature distribution	35
Figure B.4 – Process flow-chart SIST EN 62276:2017 https://standards.iteh.a/catalog/standards/sist/8e8b9b63-37cd-4587-a7t3-4db473ef5fb4/sist-en-62276-2017	36
Table 1 – Description of wafer orientations	14
Table 2 – Roughness, warp, TV5 and TTV specification limits	17
Table 3 – Maximum number of etch channels in seed position	18
Table 4 – Crystal planes to determine surface and OF orientations	25
Table 5 – Electrode size	27
Table A.1 – Selected SAW substrate orientations and corresponding Euler angles	30

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SINGLE CRYSTAL WAFERS FOR SURFACE ACOUSTIC WAVE (SAW) DEVICE APPLICATIONS – SPECIFICATIONS AND MEASURING METHODS

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity. EC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

 SIST EN 62276:2017
- 5) IEC itself does not provide any attestation of conformity independent certification bodies provide conformity assessment services and, in some areas raccess to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62276 has been prepared by IEC technical committee 49: Piezoelectric, dielectric and electrostatic devices and associated materials for frequency control, selection and detection.

This third edition cancels and replaces the second edition of IEC 62276 published in 2012. It constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- Corrections of Euler angle indications in Table 1 and axis directions in Figure 3.
- Definition of "twin" is not explained clearly enough in 3.3.3. Therefore it is revised by a more detailed definition.
- Etch channels maximum number at quartz wafer of seed which do not pass through from surface to back surface are classified for three grades in 4.2.13 a). Users use seed portions of quartz wafers for devices. They request quartz wafers with less etch channels

-6-

in seeds to reduce defects of devices. The classification of etch channels in seed may prompt a rise in quartz wafer quality.

The text of this standard is based on the following documents:

CDV	Report on voting
49/1144/CDV	49/1170/RVC

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

(standards.iteh.ai)

SIST EN 62276:2017

IEC 62276:2016 © IEC 2016

-7 -

INTRODUCTION

A variety of piezoelectric materials are used for surface acoustic wave (SAW) filter and resonator applications. Prior to an IEC meeting in 1996 in Rotterdam, wafer specifications were typically negotiated between users and suppliers. During this meeting, a proposal was announced to address wafer standardization. This standard has been prepared in order to provide industry standard technical specifications for manufacturing piezoelectric single crystal wafers to be used in surface acoustic wave devices.

iTeh STANDARD PREVIEW (standards.iteh.ai)