

Designation: D 4929 - 99

An American National Standard

Standard Test Methods for Determination of Organic Chloride Content in Crude Oil¹

This standard is issued under the fixed designation D 4929; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 These test methods cover the determination of organic chloride (above 1 μ g/g organically-bound chlorine) in crude oils, using either distillation and sodium biphenyl reduction or distillation and microcoulometry.
- 1.2 These test methods involve the distillation of crude oil test specimens to obtain a naphtha fraction prior to chloride determination. The chloride content of the naphtha fraction of the whole crude oil can thereby be obtained. See Section 5 regarding potential interferences.
- 1.3 Test Method A covers the determination of organic chloride in the washed naphtha fraction of crude oil by sodium biphenyl reduction followed by potentiometric titration.
- 1.4 Test Method B covers the determination of organic chloride in the washed naphtha fraction of crude oil by oxidative combustion followed by microcoulometric titration.
- 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
- 1.6 Values expressed in acceptable SI units are to regarded as the standard. The preferred concentration units are micrograms of chloride per gram of sample.

2. Referenced Documents

2.1 ASTM Standards:

D 86 Test Method for Distillation of Petroleum Products²

D 1193 Specification for Reagent Water³

D 4057 Practice for Manual Sampling of Petroleum and Petroleum Products⁴

D 4177 Practice for Automatic Sampling of Petroleum and Petroleum Products⁴

D 6299 Practice for Applying Statistical Quality Assurance

Techniques to Evaluate Analytical Measurement System Performance⁵

3. Summary of Test Methods

- 3.1 A crude oil distillation is performed to obtain the naphtha cut at 204°C (400°F). The distillation method was adapted from Test Method D 86 for the distillation of petroleum products. The naphtha cut is washed with caustic, repeatedly when necessary, until all hydrogen sulfide is removed. The naphtha cut, free of hydrogen sulfide, is then washed with water, repeatedly when necessary, to remove inorganic halides (chlorides).
- 3.2 There are two alternative test methods for determination of the organic chloride in the washed naphtha fraction, as follows.
- 3.2.1 Test Method A, Sodium Biphenyl Reduction and Potentiometry—The washed naphtha fraction of a crude oil specimen is weighed and transferred to a separatory funnel containing sodium biphenyl reagent in toluene. The reagent is an addition compound of sodium and biphenyl in ethylene glycol dimethyl ether. The free radical nature of this reagent promotes very rapid conversion of the organic halogen to inorganic halide. In effect this reagent solubilizes metallic sodium in organic compounds. The excess reagent is decomposed, the mixture acidified, and the phases separated. The aqueous phase is evaporated to 25 to 30 mL, acetone is added, and the solution titrated potentiometrically.
- 3.2.2 Test Method B, Combustion and Microcoulometry—The washed naphtha fraction of a crude oil specimen is injected into a flowing stream of gas containing about 80 % oxygen and 20 % inert gas, such as argon, helium, or nitrogen. The gas and sample flow through a combustion tube maintained at about 800°C. The chlorine is converted to chloride and oxychlorides, which then flow into a titration cell where they react with the silver ions in the titration cell. The silver ions thus consumed are coulometrically replaced. The total current required to replace the silver ions is a measure of the chlorine present in the injected samples.
- 3.2.3 The reaction occurring in the titration cell as chloride enters is as follows:

¹ These test methods are under the jurisdiction of ASTM Committee D-2 on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.03 on Elemental Analysis.

Current edition approved Jan. 10, 1999. Published March 1999. Originally published as D 4929 – 89. Last edition D 4929 – 94.

² Annual Book of ASTM Standards, Vol 05.01.

³ Annual Book of ASTM Standards, Vol 11.01.

⁴ Annual Book of ASTM Standards, Vol 05.02.

⁵ Annual Book of ASTM Standards, Vol 05.03.

$$Cl^- + Ag^+ \rightarrow AgCl(s)$$
 (1)

3.2.4 The silver ion consumed in the above reaction is generated coulometrically thus:

$$Ag^{\circ} \to Ag^{+} + e^{-} \tag{2}$$

3.2.5 These microequivalents of silver are equal to the number of microequivalents of titratable sample ion entering the titration cell.

4. Significance and Use

4.1 Organic chloride species are potentially damaging to refinery processes. Hydrochloric acid can be produced in hydrotreating or reforming reactors and the acid accumulates in condensing regions of the refinery. Unexpected concentrations of organic chlorides cannot be effectively neutralized and damage can result. Organic chlorides are not known to be naturally present in crude oils and usually result from cleaning operations at producing sites, pipelines, or tanks. It is important for the oil industry to have common methods available for the determination of organic chlorides in crude oil, particularly when transfer of custody is involved.

5. Interferences

- 5.1 *Test Method A*—Other titratable halides will also give a positive response. These titratable halides include HBr and HI.
- 5.2 Test Method B—Other titratable halides will also give a positive response. These titratable halides include HBr and HI (HOBr and HOI do not precipitate silver). Since these oxyhalides do not react in the titration cell, approximately 50 % microequivalent response is detected.
- 5.2.1 This test method is applicable in the presence of total sulfur concentration of up to 10 000 times the chlorine level.

6. Purity of Reagents

- 6.1 *Purity of Reagents*—Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available.⁶ Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.
- 6.2 *Purity of Water*—Unless otherwise indicated, references to water shall be understood to mean reagent water as defined by Type III of Specification D 1193.

DISTILLATION AND CLEANUP PROCEDURE

7. Apparatus

7.1 Round-Bottom Boiling Flask, borosilicate, 1 L, single short neck with 24/40 outer ground-glass joint.

- 7.2 *Tee Adapter*, borosilicate, 75° angle side-arm, 24/40 ground-glass joints.
- 7.3 *Thermometer*, ASTM thermometer 2C (–5 to 300°C) or 2F, (20°F to 580°F).
- 7.3.1 Other temperature measuring devices, such as thermocouples or resistance thermometers, may be used when the temperature reading obtained by these devices is determined to produce the same naphtha fraction that is obtained when mercury-in-glass thermometers are used.
- 7.4 Thermometer Adapter, borosilicate, 24/40 inner ground-glass joint.
- 7.5 Liebig Condenser, borosilicate, 300-mm length, 24/40 ground-glass joints.
- 7.6 *Vacuum Take-Off Adapter*, borosilicate, 105° angle bend, 24/40 ground-glass joints.
- 7.7 Receiving Cylinder, borosilicate, 250-mL capacity, 24/40 outer ground-glass joint.
- 7.8 Wire Clamps, for No. 24 ground-glass joints, stainless steel.
 - 7.9 Receiver Flask, for ice bath, 4 L.
- 7.10 *Copper Tubing*, for heat exchanger to cool condenser water, 6.4-mm outside diameter, 3-m length.
- 7.11 *Electric Heating Mantle*, Glas-Col Series 0, 1-L size, 140-W upper heating element, 380-W lower heating element.
- 7.12 *Variacs*, 2, for temperature control of upper and lower heating elements, 120 V, 10 amps.

8. Reagents and Materials

- 8.1 Acetone, chloride-free. (Warning: See Note 1.)
- Note 1—Warning: Extremely flammable, can cause flash fires. Health
- 8.2 *Caustic Solution*, 1 *M* potassium hydroxide (**Warning:** See Note 2.) prepared in distilled/deionized water.
- Note 2—Warning: Can cause severe burns to skin.
- 8.3 Distilled/Deionized Water.
- 8.4 Filter Paper, Whatman No. 41 or equivalent.
- 8.5 Stopcock Grease.⁸
- 8.6 Toluene, chloride-free. (Warning: See Note 3.)
- Note 3—Warning: Flammable. Health hazard.

9. Sampling

9.1 Obtain a test unit in accordance with Practice D 4057 or D 4177. To preserve volatile components, which are in some samples, do not uncover samples any longer than necessary. Samples should be analyzed as soon as possible, after taking from bulk supplies, to prevent loss of organic chloride or contamination due to exposure or contact with sample container.

Note 4—Warning: Samples that are collected at temperatures below room temperature may undergo expansion and rupture the container. For such samples, do not fill the container to the top; leave sufficient air space above the sample to allow room for expansion.

⁶ Reagent Chemicals, American Chemical Society Specifications, American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see Analar Standards for Laboratory Chemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeia and National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville, MD

⁷ Whatman No. 41 has been found satisfactory. An equivalent may be used.

⁸ Dow Corning silicone has been found satisfactory.

9.2 If the test unit is not used immediately, then thoroughly mix in its container prior to taking a test specimen. Some test units can require heating to thoroughly homogenize.

NOTE 5—**Precaution:** When heating is required, care should be taken so that no organic chloride containing hydrocarbons are lost.

10. Preparation of Apparatus

10.1 Clean all glassware by rinsing successively with toluene and acetone. After completing the rinse, dry the glassware using a stream of dry nitrogen gas. Obtain and record the masses of the round-bottom flask and receiving cylinder. Assemble the glass distillation apparatus using stopcock grease to seal all joints and wire clamps to prevent loosening of the joints. Adjust the thermometer position within the adapter tee such that the lower end of the capillary is level with the highest point on the bottom of the inner wall of the adapter tee section that connects to the condenser.

Note 6—A diagram illustrating the appropriate positioning of the thermometer can be found in Test Method D 86.

10.2 Form the copper tubing into a coil to fit inside the receiver flask, leaving room in the center of the flask for the receiving cylinder. With the PVC tubing, connect one end of the copper coil to the water source, and connect the other end of the coil to the lower fitting of the Liebig condenser cooling jacket. Connect the upper condenser fitting to the water drain. Fill the receiver flask with an ice/water mixture, and turn on the water. Maintain the temperature of the condenser below 10°C.

11. Procedure

11.1 Add a 500-mL crude oil test specimen to tared round bottom flask. Obtain and record the mass of the crude oil-filled flask to the nearest 0.1 g. Connect the flask to the distillation apparatus. Place the heating mantle around the flask, and support the heating mantle/flask from the bottom. Connect the heating mantle to the variacs. Turn on the variacs and start the distillation. During the distillation, adjust the variac settings to give a distillation rate of approximately 5 mL/min. Continue the distillation until a thermometer reading of 204°C (400°F) is attained. When the temperature reaches 204°C (400°F), end the distillation by first disconnecting and removing the receiving cylinder. After the receiving cylinder has been removed, turn off the variacs and remove the heating mantle from the flask. Obtain and record the mass of the receiving cylinder and distillate.

11.1.1 The precision and bias statements were determined using mercury-in-glass thermometers only. Therefore, when alternate temperature measuring devices are used, the cut-off temperature so obtained shall be that which will produce a naphtha cut similar to what would be yielded when mercury-in-glass thermometers are used. Such alternate temperature measuring devices shall not be expected to exhibit the same temperature lag characteristics as mercury-in-glass thermometers.

11.2 Transfer the naphtha fraction from the receiving cylinder to the separatory funnel. Using the separatory funnel, wash the naphtha fraction three times with equal volumes of the caustic solution (1 M KOH). Follow the caustic wash with a water wash, again washing three times with equal volumes.

The caustic wash removes hydrogen sulfide, while the water wash removes traces of inorganic chlorides either originally present in the crude or from impurities in the caustic solution. After the washings are complete, filter the naphtha fraction to remove residual free-standing water. Store the naphtha fraction in a clean glass bottle. This naphtha fraction can now be analyzed for organic chlorides by either sodium biphenyl or combustion/microcoulometric techniques.

11.3 Measure the density of the crude oil specimen and the naphtha fraction by obtaining the mass of 10.0 mL (using a 10-mL volumetric flask) of each to the nearest 0.1 g.

12. Calculation

12.1 Calculate naphtha fraction as follows:

$$f = M_n / M_c \tag{3}$$

where:

f = mass fraction of naphtha collected,

 M_n = mass of naphtha collected, and

 M_c = mass of crude oil specimen.

12.2 Calculate the density as follows:

Density,
$$g/mL = m/v$$
 (4)

where:

m = mass of sample specimen, g, and

v = volume of sample specimen, mL.

TEST METHOD A—SODIUM BIPHENYL REDUCTION AND POTENTIOMETRY

13. Apparatus

13.1 *Electrodes:* The cleaning and proper care of electrodes are critical to the accuracy of this test. Manufacturer's instructions for the care of electrodes shall be followed.

13.1.1 Glass, general purpose.⁹

Note 7—When glass electrodes are in continuous use, weekly cleaning with chrome-sulfuric acid (**WARNING:** Strong oxidizer; can cause severe burns; recognized carcinogen), or other strongly oxidizing cleaning solution, is recommended.

13.1.2 Silver-Silver Chloride, billet-type.

13.2 *Titrator*, potentiometric. The titrator is equipped with a 5-mL or smaller buret and a magnetic stirring motor.

14. Reagents and Materials

14.1 Acetone, chloride-free. (Warning: See Note 1.)

14.2 Congo Red Paper.

14.3 2,2,4, *trimethyl pentane* (*isooctane*), reagent grade. (**Warning:** See Note 3.)

14.4 *Nitric Acid* (Warning: See Note 8.), approximately 5 *M*. Add 160 mL of concentrated nitric acid to about 200 mL of water and dilute to 500 mL.

Note 8—Warning: Corrosive, causes severe burns.

14.5 2-Propanol, chloride-free. (Warning: See Note 3.)

14.6 Silver Nitrate, 0.01 M, standard aqueous solution.

14.7 *Sodium Biphenyl Reagent*¹⁰—This is packed in 0.5-oz French square bottles (hereafter referred to as vials). The entire

⁹ Beckman No. 41262 has been found satisfactory. An equivalent may be used.

¹⁰ Available from Southwestern Analytical Chemicals, P.O. Box 485, Austin, TX.