TECHNICAL SPECIFICATION

ISO/TS 17796

First edition 2013-06-15

Rubber — Trapping and identification of volatile components of rubber fumes with active sampling on a poly(2,6-diphenylphenylene oxide) type sorbent, using thermodesorption and gas chromatographic method with mass spectrometric detection

Caoutchouc — Piégeage et identification des composés volatils des fumées de procédés du caoutchouc, par échantillonnage actif sur un sorbant de type poly(oxyde de 2,6-diphénylphénylène), en utilisant une méthode par thermodésorption et chromatographie en phase gazeuse avec détection par spectrométrie de masse

ISO/TS 17796:2013

https://standards.iteh.ai/catalog/standards/iso/05c9aca4-52ec-4ef1-a7bd-095afc14f172/iso-ts-17796-2013

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO/TS 17796:2013

https://standards.iteh.ai/catalog/standards/iso/05c9aca4-52ec-4efl-a7bd-095afc14fl72/iso-ts-17796-2013

COPYRIGHT PROTECTED DOCUMENT

© ISO 2013

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents		Page
Fore	reword	iv
1	Scope	1
2	Terms and definitions	1
3	Principle	2
4	Sampling	2
5	Thermal desorption, gas chromatography	3 3 3
6	Test report	6
Ann	nex A (informative) Example of application to a laboratory EPDM/peroxide mix	7
Ann	nex B (informative) Example of application to a laboratory NR mix	10
Ribliography iTeh Standards		

(https://standards.iteh.ai) Document Preview

ISO/TS 17796:2013

https://standards.iteh.ai/catalog/standards/iso/05c9aca4-52ec-4et1-a/bd-095atc14f1/2/iso-ts-1///96-2013

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. www.iso.org/patents

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

The committee responsible for this document is ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 2, *Testing and analysis*.

(https://standards.iteh.ai)
Document Preview

ISO/TS 17796:2013

https://standards.iteh.ai/catalog/standards/iso/05c9aca4-52ec-4efl-a7bd-095afc14f172/iso-ts-17796-2013

Rubber — Trapping and identification of volatile components of rubber fumes with active sampling on a poly(2,6-diphenylphenylene oxide) type sorbent, using thermodesorption and gas chromatographic method with mass spectrometric detection

1 Scope

This Technical Specification specifies a qualitative method of thermodesorption – gas chromatography – mass spectrometry (TD-GC-MS) for the identification of volatile components in rubber fumes, after trapping on a solid sorbent based on 2,6-diphenylphenylene-oxide polymer resin. It is applicable to a screening of emissions from the processing of rubber compounds in the ambient workplace and storage environment.

CAUTION — Persons using this Technical Specification should be familiar with the procedures for gas chromatography – mass spectrometry measurement and analysis. All the operative details for the application and set-up of the GC-MS are assumed to be in agreement with the operative instructions provided by the manufacturer. Therefore, the detailed procedure for the operation is not included in this Technical Specification. This Technical Specification specifies a qualitative method which is not aimed at quantitative analyses.

2 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

2.1

semi-volatile organic compound

organic compound whose boiling point is in the range from (240 to 260) °C to (380 to 400) °C

Note 1 to entry: This classification has been defined by the World Health Organization. [4]

Note 2 to entry: Boiling points of some compounds are difficult or impossible to determine because they decompose before they boil at atmospheric pressure. Vapour pressure is another criterion for the classification of compound volatility that may be used for the classification of organic chemicals. SVOCs have vapour pressures of between 10^{-2} kPa and 10^{-8} kPa.

2.2

volatile organic compound

VOC

organic compound whose boiling point is in the range from (50 to 100) °C to (240 to 260) °C

Note 1 to entry: This classification has been defined by the World Health Organization. [4]

Note 2 to entry: Boiling points of some compounds are difficult or impossible to determine because they decompose before they boil at atmospheric pressure. Vapour pressure is another criterion for the classification of compound volatility that may be used for the classification of organic chemicals. VOCs generally have saturation vapour pressures at 25 $^{\circ}$ C greater than 10^2 kPa.

2.3

very volatile organic compound

VVOC

organic compound whose boiling point is in the range from <0 °C to (50 to 100) °C

Note 1 to entry: This classification has been defined by the World Health Organization.[4]

ISO/TS 17796:2013(E)

Note 2 to entry: Boiling points of some compounds are difficult or impossible to determine because they decompose before they boil at atmospheric pressure. Vapour pressure is another criterion for the classification of compound volatility that may be used for the classification of organic chemicals. VVOCs typically have vapour pressures of greater than 15 kPa.

3 Principle

Rubber fumes are sampled on an adsorbent support using a pump. They are recovered from the trap by thermal desorption and the substances composing the desorbed fume are identified by the mass spectrometer. The method identifies the components adsorbed on the trap support used, except benzene.

The actual composition of the emissions depends on the selection of ingredients used for compounding and on the thermal and mechanical conditions applied to the rubber. Moreover, environmental humidity might interfere with the sorption capability of the sorbent material.

The sorbent tube is used for the trapping of volatile (VOC) (boiling point >50 °C to 100 °C) and semi-volatile (SVOC) (boiling point >240 °C) organic compounds in the C6 to C26 range, which are chemically stable against a desorption temperature of 200 °C. Very volatile compounds (VVOC) (boiling point approximately 50 °C to 100 °C) are only partially retained by the sorbent. Other sorbents based on carbon molecular sieve or by multi-sorbent bed tube may be more appropriate in this case.

The upper limit of the useful range is set by the sorptive capacity of the sorbent used and by the linear dynamic range of the gas chromatograph column and detector or by the sample-splitting capability of the analytical instrumentation used. The sorptive capacity is measured as a breakthrough volume of air, which determines the maximum air volume that shall not be exceeded when sampling.

NOTE Small amounts of benzene could be created by the thermal decomposition of the sorbent.

4 Sampling

4.1 Equipment

ISO/TS 17706:2013

- **4.1.1 Trap support**, poly(2,6-diphenylphenylene oxide)¹⁾, of quantity 180 mg to 200 mg, of particle size 0,18 mm to 0,25 mm (60/80 mesh), and of specific surface 20 m²/g to 35 m²/g. Another quantity, particle size or specific surface may be chosen if the test result is proven to be equivalent.
- **4.1.2 Adsorbent tubes**, stainless steel tube.

4.1.3 Calibrated pump

Calibrate the pump with the sorbent tube assembly inline, using a calibrated external flowmeter.

One end of the calibrated flowmeter shall be kept at atmospheric pressure to ensure proper operation.

4.2 Operating conditions

4.2.1 Trap support

Recondition the trap sorbent material before sampling, heating it at 300 °C under inert gas for 1 h (minimum) to 8 h (maximum). Check the cleaning of the trap support by GC-MS analysis.

Recondition tubes stored for more than four weeks before sampling.

¹⁾ One example of poly(2,6-diphenylphenylene oxide) is Tenax TA^{\otimes} , which is an example of a suitable product available commercially. This information is given for the convenience of users of this Technical Specification and does not constitute an endorsement by ISO of this product.