INTERNATIONAL STANDARD

Second edition 2018-05

Soil quality — Determination of effective cation exchange capacity and base saturation level using barium chloride solution

Qualité du sol — Détermination de la capacité d'échange cationique et du taux de saturation en bases échangeables à l'aide d'une solution **iTeh ST**de chlorure de baryum REVIEW

(standards.iteh.ai)

ISO 11260:2018 https://standards.iteh.ai/catalog/standards/sist/181c0854-e47d-4121-875ed1d09c4a6773/iso-11260-2018

Reference number ISO 11260:2018(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11260:2018</u> https://standards.iteh.ai/catalog/standards/sist/181c0854-e47d-4121-875ed1d09c4a6773/iso-11260-2018

COPYRIGHT PROTECTED DOCUMENT

© ISO 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents

Page

Foreword			iv
1	Scop	e	
2	Norr	native references	
3	Terms and definitions		
4			
5		rferences	
6	Procedures		2
	6.1 Sample pretreatment		
	6.2	Leaching.	
	0.2	6.2.1 Reagents	
		6.2.2 Leaching procedure	
	6.3	Determination of CEC	
	0.0	6.3.1 Principle	
		6.3.2 Reagents	
		6.3.3 Calibration series	
		6.3.4 Spectrometric procedure	
		6.3.5 Calculation	
	6.4	Determination of exchangeable sodium and potassium	
		6.4.1 Principles TANDARD PREVIEW6.4.2 Reagents	5
		6.4.3 Calibration series a processitem ai6.4.4 Spectrometric procedure	5
		6.4.4 Spectrometric procedure	5
		6.4.5 Calculations	5
	6.5	Determination of exchangeable calcium and magnesium	6
		Determination of exchangeable carcium ⁸ and magnesium 6.5.1 ^{https} Principle iteh.ai/catalog/standards/sist/181c0854-e47d-4121-875e- 6.5.2 Reagents d1d09c4a6773/iso-11260-2018	6
		6.5.2 Reagents <u>d1d09c4a6//3/iso-11260-2018</u>	6
		6.5.3 Calibration series	7
		6.5.4 Spectrometric procedure	
		6.5.5 Calculation	7
7	Performance characterization		
	7.1	Calibration check	
	7.2	Repeatability and reproducibility	
8	Test	report	8
Annex A (informative) Performance data			9
Bibliography			

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 190 *Soil quality*, Subcommittee SC 3, *Chemical and physical characterization*. ISO 11260:2018 https://standards.iteh.ai/catalog/standards/sist/181c0854-e47d-4121-875e-

This second edition cancels and replaces the first edition (ISO 11260:1994), which has been technically revised. It also incorporates the Technical Corrigendum ISO 11260:1994/Cor.1:1996.

Soil quality — Determination of effective cation exchange capacity and base saturation level using barium chloride solution

WARNING — Persons using this document should be familiar with normal laboratory practice. This document does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices.

IMPORTANT — It is absolutely essential that tests conducted in accordance with this document be carried out by suitably qualified staff.

1 Scope

This document specifies a method for the determination of the cation exchange capacity (CEC) at the pH of the soil and for the determination of the content of exchangeable sodium, potassium, calcium and magnesium in soil.

This document is applicable to all types of air-dried soil samples. ISO 11464 can be used for pre-treatment.

iTeh STANDARD PREVIEW

2 Normative references (standards.iteh.ai)

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

d1d09c4a6773/iso-11260-2018 ISO 3696, Water for analytical laboratory use — Specification and test methods

ISO 11265, Soil quality — Determination of the specific electrical conductivity

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>
- IEC Electropedia: available at http://www.electropedia.org/

4 Principle

The determination of CEC as specified in this document is a modification of the method proposed by Gillman (see Reference [6]). The CEC of soil samples is determined at the pH of the soil and at a low total ionic strength.

The soil is first saturated with respect to barium by treating the soil three times with a 0,1 mol/l barium chloride solution. Thereafter, the soil is equilibrated with a 0,01 mol/l barium chloride solution. Subsequently a known excess of 0,02 mol/l magnesium sulfate is added. All the barium present, in solution as well as adsorbed, is precipitated in the form of highly insoluble barium sulfate and, consequently, the sites with exchangeable ions are readily occupied by magnesium. The excess magnesium is determined by inductively coupled plasma atomic emission spectrometry ICP-AES. Alternative methods with a comparable precision and detection limit may also be used.

It is also possible to determine the concentrations of sodium, potassium, calcium and magnesium (and other elements such as iron, manganese and aluminium) in the 0,1 mol/l barium chloride extract of the soil.

If the barium chloride extract has a yellowish-brown colour, this indicates that some organic matter has been dissolved. If this occurs, record it in the test report.

NOTE 1 Since organic matter contributes to the CEC, its presence will result in a measured CEC value which is an underestimation of the actual CEC.

NOTE 2 The sum of exchangeable cations can give a result that is greater than the actual CEC due to the dissolution of salts present in the soil. However, preliminary washing of the soil with water to remove these salts can change the relative proportions of cations in the CEC.

5 Interferences

The method described suffers from interference from calcium which may be present as calcite or gypsum in the sample. Also, the presence of any soluble salts gives values for the exchangeable cations that are higher than the actual exchangeable amounts (see References [4] and [5]).

Measurement of the specific electrical conductivity of the soil samples in accordance with ISO 11265 will indicate if the soil samples are affected by salt.

6 Procedures

iTeh STANDARD PREVIEW

6.1 Sample pretreatment

(standards.iteh.ai)

Pretreat and air-dry the sample, e.g. in accordance with ISO 11464.

<u>ISO 11260:2018</u>

6.2 Leaching https://standards.iteh.ai/catalog

https://standards.iteh.ai/catalog/standards/sist/181c0854-e47d-4121-875ed1d09c4a6773/iso-11260-2018

6.2.1 Reagents

Use only reagents of recognized analytical grade and water in accordance with grade 2 of ISO 3696.

6.2.1.1 Barium chloride solution, $c(BaCl_2) = 0,1 \text{ mol/l}$.

Dissolve 24,43 g of barium chloride dihydrate (BaCl₂·2H₂O) in water and make up to 1 000 ml with water at 20 °C.

6.2.1.2 Barium chloride solution, *c*(BaCI₂) = 0,002 5 mol/l.

Dilute 25 ml of the 0,1 mol/l barium chloride solution to 1 000 ml at 20 °C.

6.2.1.3 Magnesium sulfate solution, $c(MgSO_4) = 0,020 0 \text{ mol/l}.$

Dissolve (4,93 \pm 0,01) g of magnesium sulfate heptahydrate (MgSO₄·7H₂O) (see Note) in water and make up to 1 000 ml at 20 °C.

 $MgSO_4 \cdot 7H_2O$ may lose water of crystallization on standing. The reagent should be standardized by titration with EDTA at pH 10 using Eriochrome Black T indicator or be kept in a bottle in a sealed polyethylene bag placed in a refrigerator.

6.2.2 Leaching procedure

Transfer 2,50 g of air-dried soil (sieved to a particle size < 2 mm) to a tightly stoppered polyethylene centrifuge tube of about 50 ml capacity. Note the combined mass of tube and soil (m_1) . Add 30 ml ± 0,1 ml of barium chloride solution (6.2.1.1) to the soil and shake for 1 h. Centrifuge the tubes at 3 000g for 10 min.

Transfer the supernatant liquid to a 100 ml volumetric flask. Repeat the addition of 30 ml of the barium chloride solution, the shaking and centrifugation twice more, adding the supernatant liquid to the 100 ml volumetric flask each time. Make up to the volume of the volumetric flask with barium chloride solution (6.2.1.1).

Mix, filter and store the extract for the determination of the concentration of sodium, potassium, calcium and magnesium in accordance with 6.4 and 6.5. Add 30 ml of barium chloride solution (6.2.1.2) to the soil cake and shake overnight. (The barium concentration in the equilibrium solution will be about 0,01 mol/l when 2,5 ml of solution is left in the soil cake.) Balance the tubes and centrifuge at about 3 000*q* for 10 min. Decant the supernatant liquid.

Weigh the tube with its contents and cover (m_2) . Add 30 ml ± 0,1 ml of magnesium sulfate solution (6.2.1.3) to the soil cake and shake overnight. Centrifuge at 3 000g for 10 min. Decant the supernatant solution through a coarse filter paper into a conical flask and store for the determination of the concentration of excess of magnesium in accordance with 6.3.4.

Prepare a blank by following the above described procedure completely without the addition of soil.

6.3 Determination of CEC ITCH STANDARD PREVIEW

6.3.1 Principle

(standards.iteh.ai) The cations are determined by ICP-AES.

ISO 11260:2018

Reagents https://standards.iteh.ai/catalog/standards/sist/181c0854-e47d-4121-875e-6.3.2

d1d09c4a6773/iso-11260-2018

Use only reagents of recognized analytical grade and distilled or deionized water for all solutions.

6.3.2.1 Hydrochloric acid, $c(HCl) = 12 \text{ mol/l} (\rho = 1,19 \text{ g/ml}).$

Magnesium standard solution, c(Mg) = 0,0010 mol/l.6.3.2.2

Pipette 50,0 ml of the 0,020 0 mol/l magnesium sulfate solution (6.2.1.3) into a volumetric flask of 1 000 ml and make up to the mark with water.

6.3.2.3 Calibration check solution.

Prepare the calibration check solution by using an independent standard of the same chemical matrix as the calibration solutions. The concentration of the standard shall be in the centre of the calibration curve.

6.3.3 **Calibration series**

Pipette 0 ml, 1 ml, 2 ml, 3 ml, 4 ml and 5 ml of magnesium standard solution (6.3.2.2) into a series of 100 ml volumetric flasks. Make each flask up to the mark with water and mix. These calibration solutions have magnesium concentrations of 0 mmol/l, 0,01 mmol/l, 0,02 mmol/l, 0,03 mmol/l, 0,04 mmol/l and 0,05 mmol/l, respectively.

Spectrometric procedure 6.3.4

Pipette 0,200 ml of each of the final filtrates of the soil samples (see 6.2.2) and of the blanks (see 6.2.2) into individual 100 ml volumetric flasks. Make up to the mark with water and mix.

Determine the magnesium concentration in the diluted sample extracts (c_1), the diluted blank (c_{b1}) and in the calibration solutions by ICP-AES (see ISO 22036), with the instrument set according to the manufacturer's instructions for optimum performance.

6.3.5 Calculation

Correct the concentrations of magnesium in the sample solutions for the volume of the liquid retained by the centrifuged soil after being treated with 0,002 5 mol/l barium chloride solution using Formula (1):

$$c_2 = \frac{c_1 \left(30 + m_2 - m_1\right)}{30} \tag{1}$$

where

- *c*² is the corrected magnesium concentration in the sample, in millimoles per litre;
- *c*¹ is the magnesium concentration in the sample, in millimoles per litre;
- m_1 is the mass of the centrifuge tube with air-dried soil, in grams;
- m_2 is the mass of the centrifuge tube with wet soil, in grams.

Calculate the cation exchange capacity (CEC) of the soil using <u>Formula (2)</u>:

$$CEC = \frac{(c_{b1} - c_2) \cdot 2 \cdot 500 \,\text{iY}}{m \cdot 10} \cdot \frac{abo \,\text{Sw}ANDARD \,\text{PREVIEW}}{100} \text{(standards.iteh.ai)}$$
(2)

where

ISO 11260:2018

- CEC is the cation exchange capacity of the soil in centimoles positive charge per kilogram; d1d09c4a6773/iso-11260-2018
- c_{b1} is the magnesium concentration in the blank (see <u>6.2.2</u>), in millimoles per litre, mmol/l;
- *c*₂ is the corrected magnesium concentration in the sample, in millimoles per litre;
- 2 is the valency of magnesium (2 positive charges, Mg²⁺);
- *V* is the volume of the magnesium sulfate solution (<u>6.2.1.3</u>) in millilitres, ml;
- *m* is the mass of the air-dried sample, in grams;
- 10 is the factor to convert millimoles to centimoles: 10 mmol/cmol;
- 500 is the factor of dilution during the measuring step (6.3.4);
- *w* is the percentage of water content by mass on the basis of oven dried soil, determined in accordance with ISO 11465.

If the CEC exceeds 40 cmol+/kg, repeat the determination using less soil, adjusting the calculation accordingly.

NOTE The unit "centimoles positive charge per kilogram", written in abbreviated form as cmol+/kg, is an absolute amount equivalent to the formerly used unit "milli" equivalents per hundred grams.

6.4 Determination of exchangeable sodium and potassium

6.4.1 Principle

Sodium and potassium are measured by ICP-AES on an acidified 0,1 mol/l barium chloride extract of soil samples.

6.4.2 Reagents

Use only reagents of recognized analytical grade and distilled or deionized water for all solutions.

6.4.2.1 Potassium and sodium stock solution, $\rho(K) = 1000 \text{ mg/l}$ and $\rho(Na) = 400 \text{ mg/l}$.

Pulverize the potassium chloride and sodium chloride, heat the powders obtained either at 400 °C to 500 °C for at least 8 h or at about 200 °C for 24 h, and cool the powders in a desiccator before use.

Dissolve 1,906 8 g of potassium chloride and 1,016 8 g of sodium chloride in a small amount of water. Transfer to a 1 000 ml volumetric flask and make up to the mark with water.

Commercially available potassium and sodium stock solutions may be used.

6.4.2.2 Diluted stock solution, $\rho(K) = 100 \text{ mg/l}$ and $\rho(Na) = 40 \text{ mg/l}$.

Pipette 25,0 ml of the stock solution (6.4.2.1) into a 250 ml volumetric flask and make up to the mark with water.

6.4.2.3 Calibration check solution and ards.iteh.ai)

Prepare the calibration check solution by using an independent standard of the same chemical matrix as the calibration solutions. The concentration of the standard shall be in the centre of the calibration curve.

d1d09c4a6773/iso-11260-2018

6.4.3 Calibration series

Pipette 0 ml, 5 ml, 10 ml, 15 ml, 20 ml and 25 ml of the diluted stock solution (<u>6.4.2.2</u>) into individual 50 ml volumetric flasks. Add 10,0 ml of 0,1 mol/l barium chloride solution (<u>6.2.1.1</u>). Make up to the mark with water. These calibration solutions have potassium concentrations of 0 mg/l, 10 mg/l, 20 mg/l, 30 mg/l, 40 mg/l and 50 mg/l and sodium concentrations of 0 mg/l, 4 mg/l, 8 mg/l, 12 mg/l, 16 mg/l and 20 mg/l, respectively.

6.4.4 Spectrometric procedure

Pipette 2,0 ml of each of the soil extracts and the blank (see <u>6.2.2</u>) into test tubes. Add 8,0 ml of water to each tube and mix. Determine the concentrations of sodium and potassium in the calibration solutions, samples and blank by ICP-AES (see ISO 22036).

To prevent contamination with sodium, clean the glassware by soaking it overnight in 4 mol/l of nitric acid, technical grade.

6.4.5 Calculations

Calculate the exchangeable sodium and potassium contents in the soil samples using <u>Formulae (3)</u> and <u>(4)</u>:

$$b(\text{Na, exch}) = \frac{2,1749(\rho_3 - \rho_{b2})}{m} \times \frac{100 + w}{100}$$
(3)

$$b(K, exch) = \frac{1,2788(\rho_3 - \rho_{b2})}{m} \times \frac{100 + w}{100}$$
(4)