INTERNATIONAL STANDARD

ISO 11001-1

Second edition 2016-02-15

Agricultural wheeled tractors — Three-point hitch couplers —

Part 1: **U-frame coupler**

Tracteurs agricoles à roues — Coupleurs rapides trois points —

iTeh STPartie D.Coupleur par cadre en UEW (standards.iteh.ai)

<u>SIST ISO 11001-1:2016</u> https://standards.iteh.ai/catalog/standards/sist/d860ffe0-4961-498b-bdfa-970d80f92bcf/sist-iso-11001-1-2016

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 11001-1:2016</u> https://standards.iteh.ai/catalog/standards/sist/d860ffe0-4961-498b-bdfa-970d80f92bcf/sist-iso-11001-1-2016

COPYRIGHT PROTECTED DOCUMENT

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Con	ntents	Page
Forev	word	iv
1	Scope	1
2	Normative references	1
3	Principle of frame coupler system	1
4	Coupler dimensions	1
5	Dimensions associated with implement	5
6	Requirements	6

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 11001-1:2016</u> https://standards.iteh.ai/catalog/standards/sist/d860ffe0-4961-498b-bdfa-970d80f92bcf/sist-iso-11001-1-2016

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information.

The committee responsible for this document is ISO/TC 23, *Tractors and machinery for agriculture and forestry*, Subcommittee SC 4, *Tractors*.

SIST ISO 11001-1:2016

This second edition cancels and replaces the first edition (ISO/11001-1-1993)) which has been technically revised. 970d80f92bcf/sist-iso-11001-1-2016

ISO 11001 consists of the following parts, under the general title *Agricultural wheeled tractors* — *Three-point hitch couplers*:

- Part 1: U-frame coupler
- Part 2: A-frame coupler
- Part 3: Link coupler
- Part 4: Bar coupler

Agricultural wheeled tractors — Three-point hitch couplers —

Part 1:

U-frame coupler

1 Scope

This part of ISO 11001 specifies the essential dimensions for the attachment of three-point hitch implements to agricultural wheeled and track-laying tractors equipped with a three-point free link hitch according to ISO 730 or ISO 8759-1 and a U-frame hitch coupler.

NOTE In general the dimensions associated with the tractor and implement for use with hitch couplers are the same as those for the three-point linkage specified in ISO 730 or ISO 8759-1, and those for the clearance zone specified in ISO 2332.

The three-point hitch coupler systems constitute a special method of implement mounting. The hitch couplers are an additional component located between the three-point linkage and the implement, making it possible to hitch and unhitch from the operator's seat. Due to the special construction and function of hitch couplers, it can be necessary to vary the length of the upper and lower links indicated in the referenced standards.

(standards.iteh.ai)

This part of ISO 11001 applies to categories 1, 2N, 2, 3N, 3, 4N, and 4 of agricultural wheeled and track-laying tractors as defined in ISO 730 or ISO 875901-1:2016

https://standards.iteh.ai/catalog/standards/sist/d860ffe0-4961-498b-bdfa-970d80f92bcf/sist-iso-11001-1-2016

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 730, Agricultural wheeled tractors — Rear-mounted three-point linkage — Categories 1N, 1, 2N, 2, 3N, 3, 4N and 4

ISO 2332:2009, Agricultural tractors and machinery — Connection of implements via three-point linkage — Clearance zone around implement

ISO 8759-1, Agricultural wheeled tractors — Front-mounted equipment — Part 1: Power take-off and three-point linkage

3 Principle of frame coupler system

A frame coupler system is a one-phase implement coupler where the three-point linkage of the tractor (see ISO 730 or ISO 8759-1) is fitted with a U-frame and the implement has the provisions to be mounted to the frame. Hitching and unhitching can be operated from the tractor operator's seat.

4 Coupler dimensions

Coupler dimensions shall comply with Figure 1 and Table 1.

4.1 The upper hook offset (dimension B_5) shall be not more than 15,75 mm greater or 6,35 mm less than the lower socket offset (dimension B_1).

ISO 11001-1:2016(E)

4.2 The implement shall provide a minimum clearance h_3 , (see Figure 2 and Table 2) when attached to the coupler to permit lowering all elements of the coupler to ensure satisfactory attachment and detachment of the implement from the coupler.

NOTE Older legacy implements may only have clearances of 120,9 mm for categories 1, 2N, 2, 3N, and 3, and 146 mm minimum for categories 4N and 4.

- **4.3** The upper hook of the quick coupler shall be centred between the lower sockets within 3 mm.
- **4.4** The lower implement attaching point on the quick-attaching coupler shall be located in the vertical position such that the lift range, power range and levelling adjustment, as specified in ISO 730 or ISO 8759-1 are fulfilled.
- **4.5** Implement components, other than the hitch pins, that are in alignment with the lower socket width (dimension A_1) shall not extend forward of the centreline of the lower socket for a distance of h_5 (see Figure 2 and Table 2) above the lower socket. Components above this height, extending laterally more than l_3 (see Figure 2 and Table 2) from the coupler centreline, shall not extend more than 25 mm forward of the vertical centreline through the upper hook opening.
- **4.6** The lower socket width (A_1) shall be maintained within the area defined by dimensions B_2 , H_6 , H_7 and B_9 .
- **4.7** The lower link to coupler pins may be recessed to provide design freedom to obtain structural integrity in the coupler frame, resulting in a common dimension for L_3 and L_6 , and L_4 and L_7 , respectively.
- **4.8** Note that ISO 730 specifies that dimension L in Table 2 shall have a range of 75 mm for hitch categories 1, 2N, and 2 and a range of 100 mm for hitch categories 3N, 3, 4N, and 4. Dimension B_1 in this part of ISO 11001 allows the lower socket offset to be larger than the range allowed in ISO 730. For tractors designed with U-frame couplers as standard equipment, the lower links should be shortened so that the distance to the lower U-frame coupler law falls within the range for dimension L specified in ISO 730. For tractors that offer U-frame couplers as an option, the lower links should be designed to the minimum L dimension given in ISO 730 as far as possible to minimize the distance that the combined lower link and U-frame coupler length is over the upper limit of the L dimension given in ISO 730.
- **4.9** For U-frame couplers that by design can be converted to different hitch categories, dimensions H_6 , H_7 , H_5 , L_4 , L_2 , L_5 and L_3 may not be achieved in all configurations.

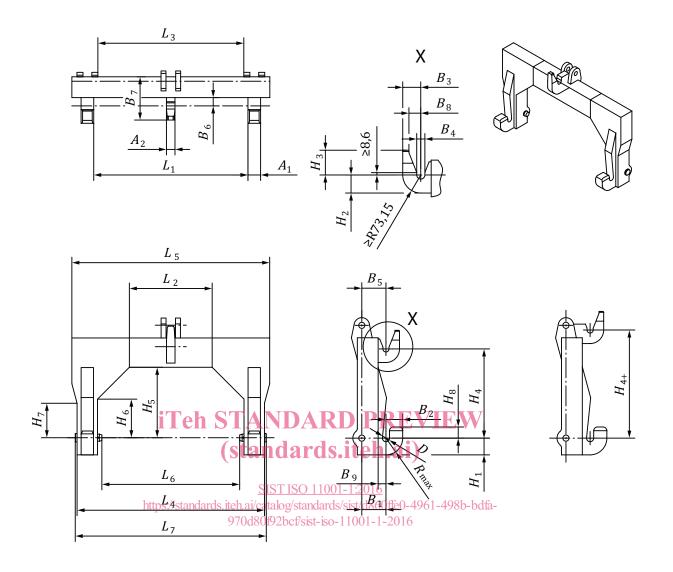


Figure 1 — Coupler dimensions

 ${\bf Table~1-Coupler~dimensions}$

Dimensions in millimetres

			Category												
Dimen- sions	Designa- tion	1		2N		2		3N		3		4N		4	
		min	max	min	max	min	max	min	max	min	max	min	max	min	max
L_1	Lower socket in- side span	686	690	686	690	828	834	828	834	970	975	925	930	1 170	1 175
A_1	Lower sock- et width	28	30	63	67	63	67	63	67	63	67	86	89	86	89
B ₁	Lower sock- et offset		104	_	130	_	130	_	130	_	130	_	165	_	165
D	Lower sock- et diameter	38,1	38,6	38,1	38,6	38,1	38,6	38,1	38,6	38,1	38,6	52	52,5	52	52,5
B ₂	Lower sock- et overhang	_	90	_	90	_	90	_	90	_	90	_	130	_	130
H ₁	Lower sock- et depth	_	90	_	90	_	90	_	90	_	90	_	130	_	130

 Table 1 (continued)

	Designa- tion	Category													
Dimen- sions		1		2N		2		3N		3		4N		4	1
310113		min	max	min	max	min	max	min	max	min	max	min	max	min	max
A_2	Upper hook width	_	36	_	44	_	44	_	44	_	44	_	57	_	57
B_3	Upper hook overhang	_	73	_	73	_	73	_	73	_	73	_	82	_	82
B_4	Upper hook opening	32,5	33,3	32,5	33,3	32,5	33,3	32,5	33,3	32,5	33,3	45,7	46,5	45,7	46,5
B_5	Upper hook offset	_	108,5	_	130	_	130		130	_	130	_	165	_	165
H ₂	Upper hook depth	_	92	_	92	_	92	-	92	_	92	_	102	_	102
Н3	Upper hook height	_	100	_	100	_	100	ı	100	_	100	_	120	_	120
H_4	Upper hook vertical spacing	375	378	375	378	375	378	477	480	477	480	680	683	680	683
H ₄₊	Alternate upper hook vertical spacing (optional)	455	458	478	481	478	481	554	557	554	557	_	_	_	_
В ₆	Implement mast clear- ance	42	-	42	SIA (Sta		la r d	S-1t	РК ећ.а	42 11)	— —	54	_	54	_
H ₅	Coupler frame height	283	 nttps://sta	283 ındard	 s.iteh.ai	<u>283</u> Г √catalo	IS O- 11 g/standa		1	365 0-496	 1-498b-	508 bdfa-	_	508	_
Н ₆	Coupler leg clearance height inside	200	_	200	970d		ocf/sist-is —		-		_	330	_	330	_
Н7	Coupler leg clearance height out- side	180	_	180	_	180	_	180	_	180	_	300	_	300	_
Н8	Lower hook height	_	60	_	60	_	60	_	60	_	60	_	75	_	75
L_2	Coupler frame clear-ance width	560	_	560	_	560	_	560	_	560	_	660	_	660	_
<i>L</i> ₃	Coupler frame in- side width	657	_	657	_	796	_	796	_	858	_	858	_	1 104	_
L_4	Coupler frame lower out- side width	_	806	_	806	_	1 005	_	1 005	_	1 175	_	1 175	_	1 420
L_5	Coupler frame upper out- side width	_	880	_	880	_	1 065	_	1 065	_	1 175	_	1 420	_	1 420
L_6	Lower link attaching pin inside	620	_	620	_	760	_	760	_	860	_	860	_	1 104	_
L_7	Lower link attaching pin outside	_	830	_	830	_	1 020		1 020	_	1 220	_	1 220	_	1 420

		Category													
Dimen- sions	Designa- tion	1		2N		2		3N		3		4N		4	1
510115	tion	min	max	min	max	min	max	min	max	min	max	min	max	min	max
B ₇	Coupler frame over- all span	_	225	_	225	_	225	_	225	_	305	_	305	_	305
B ₈	Upper hook reach	48	_	48	_	48	_	48	_	48	_	63	_	63	_
В9	Implement lower frame clearance	42	_	42	_	42	_	42	_	42	_	54	_	54	_
R	Lower hitch cou- pler radius	_	90	_	90	_	90	_	100	_	100	_	130	_	130

Table 1 (continued)

5 Dimensions associated with implement

Dimensions associated with the implement shall comply with Figure 2 and Table 2.

5.1 For implements with cantilever-mounted lower hitch pins, special quick coupler hitch pins shall be supplied to dimensions d_1, l_1, l_2 and d_2 . Adapter bushings may be supplied which convert existing three-point hitch pins to dimensions d_1, l_1, l_2 and d_2 instead of special quick coupler hitch pins.

For three-point hitch implements on which the lower hitch points consist of clevis style mounting pins, no additional thrust surfaces are required provided that the pin diameter and support dimensions conform to dimensions datalated and breatalog/standards/sist/d860ffe0-4961-498b-bdfa-

970d80f92bcf/sist-iso-11001-1-2016
The method used and dimensions related to attaching the pins or adapter bushings to the implement are at the discretion of the implement manufacturer.

- **5.2** The lower implement attaching point on the U-frame coupler shall be located in the vertical position such that the lift range, power range and levelling adjustment, as specified in ISO 730 or ISO 8759–1, are fulfilled.
- **5.3** Implement components, other than the hitch pins and clevis, that are in alignment with the lower socket width [dimension A_1 (see Figure 1 and Table 1)] shall not extend forward of the centreline of the lower socket for a distance of h_5 (see Figure 2 and Table 2) above the lower socket.

Components above this height extending laterally more than l_3 (see Figure 2 and Table 2) from the coupler centreline shall not extend more than 25 mm forward of the vertical centreline through the upper hook opening.

- **5.4** The adapter or lower hitch pin shall be in line within 0,015 mm per 1 mm of pin length.
- **5.5** The implement shall provide a minimum clearance h_3 (see Figure 2 and Table 2) when attached to the coupler to permit lowering all elements of the coupler, for satisfactory attachment and detachment of the implement from the coupler.

NOTE Older legacy implements may only have clearances of 120,9 mm for categories 1, 2N, 2, 3N, and 3, and 146 mm minimum for categories 4N and 4.

5.6 The upper hook opening on the implement shall be located central to the lower hitch pin shoulders within 3 mm.

⁺ A second alternative upper hook position may be provided as an option. This position matches the North American practice for mast height for categories 1, 2N, 2, 3N and 3 for three-point free-link attachment