This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation: A193/A193M-07 Designation: A 193/A 193M - 08

Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High Temperature or High Pressure Service and Other Special Purpose Applications¹

This standard is issued under the fixed designation A 193/A 193M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope*

1.1 This specification² covers alloy and stainless steel bolting material for pressure vessels, valves, flanges, and fittings for high temperature or high pressure service, or other special purpose applications. The term *bolting material* as used in this specification covers bars, bolts, screws, studs, stud bolts, and wire. Bars and wire shall be hot-wrought. The material may be further processed by centerless grinding or by cold drawing. Austenitic stainless steel may be carbide solution treated or carbide solution treated and strain-hardened. When strain hardened austenitic steel is ordered, the purchaser should take special care to ensure that Appendix X1 is thoroughly understood.

1.2 Several grades are covered, including ferritic steels and austenitic stainless steels designated B5, B8, and so forth. Selection will depend upon design, service conditions, mechanical properties, and high temperature characteristics.

NOTE 1—The committee formulating this specification has included fifteen steel types that have been rather extensively used for the present purpose. Other compositions will be considered for inclusion by the committee from time to time as the need becomes apparent.

NOTE 2—For grades of alloy-steel bolting material suitable for use at the lower range of high temperature applications, reference should be made to Specification A 354.

NOTE 3—For grades of alloy-steel bolting material suitable for use in low temperature applications, reference should be made to Specification A 320/A 320M.

1.3 Nuts for use with this bolting material are covered in Section 14.

1.4 Supplementary Requirements S1 through S10 are provided for use when additional tests or inspection are desired. These shall apply only when specified in the purchase order.

1.5 This specification is expressed in both inch-pound units and in SI units. However, unless the order specifies the applicable M specification designation (SI units), the material shall be furnished to inch-pound units.

1.6 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification. Within the text, the SI units are shown in brackets.

2. Referenced Documents

2.1 ASTM Standards: ³

A 153/A 153M Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware

A 194/A 194M Specification for Carbon and Alloy Steel Nuts for Bolts for High Pressure or High Temperature Service, or Both A 320/A 320M Specification for Alloy-Steel and Stainless Steel Bolting Materials for Low-Temperature Service

A 354 Specification for Quenched and Tempered Alloy Steel Bolts, Studs, and Other Externally Threaded Fasteners

A 788/A 788M Specification for Steel Forgings, General Requirements

A 962/A 962M Specification for Common Requirements for Steel Fasteners or Fastener Materials, or Both, Intended for Use at Any Temperature from Cryogenic to the Creep Range

B 695 Specification for Coatings of Zinc Mechanically Deposited on Iron and Steel

*A Summary of Changes section appears at the end of this standard.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.22 on Steel Forgings and Wrought Fittings for Piping Applications and Bolting Materials for Piping and Special Purpose Applications.

Current edition approved MarchApril 1, 2007.2008. Published April 2007.May 2008. Originally approved in 1936. Last previous edition approved in 20062007 as A193/A193M-06a.A 193/A 193M-07.

² For ASME Boiler and Pressure Vessel Code applications, see related Specification SA-193 in Section II of that Code.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

B 696 Specification for Coatings of Cadmium Mechanically Deposited

- B 766 Specification for Electrodeposited Coatings of Cadmium
- E 18 Test Methods for Rockwell Hardness of Metallic Materials
- E 21 Test Methods for Elevated Temperature Tension Tests of Metallic Materials
- E 112 Test Methods for Determining Average Grain Size
- E 139 Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials

E 150 Recommended Practice for Conducting Creep and Creep-Rupture Tension Tests of Metallic Materials Under Conditions of Rapid Heating and Short Times⁴

E 151 Recommended Practice for Tension Tests of Metallic Materials at Elevated Temperatures With Rapid Heating and Conventional or Rapid Strain Rates⁴

- E 292 Test Methods for Conducting Time-for-Rupture Notch Tension Tests of Materials
- E 328 Test Methods for Stress Relaxation for Materials and Structures
- E 566 Practice for Electromagnetic (Eddy-Current) Sorting of Ferrous Metals
- E 709 Guide for Magnetic Particle Testing
- E 606 Practice for Strain-Controlled Fatigue Testing
- F 1940 Test Method for Process Control Verification to Prevent Hydrogen Embrittlement in Plated or Coated Fasteners

F 1941 Specification for Electrodeposited Coatings on Threaded Fasteners (Unified Inch Screw Threads (UN/UNR))

2.2 ANSI Standards:⁵

B1.1 Screw Threads

B18.2.1 Square and Hex Bolts and Screws

B18.2.3.1M Metric Hex Cap Screws

B18.3 Hexagon Socket and Spline Socket Screws

B18.3.1M Metric Socket Head Cap Screws

2.3 AIAG Standard:⁶

AIAG B-5 02.00 Primary Metals Identification Tag Application Standard

3. General Requirements and Ordering Information

3.1 The inquiry and orders shall include the following, as required, to describe the desired material adequately:

3.1.1 Heat-treated condition (that is, normalized and tempered, or quenched and tempered, for the ferritic materials, and carbide solution treated (Class 1), carbide solution treated after finishing (Class 1A), and carbide solution treated and strain-hardened (Classes 2, 2B and 2C), for the austenitic stainless steels; Classes 1B and 1C apply to the carbide solution-treated nitrogen-bearing stainless steels; Class 1D applies to material carbide solution treated by cooling rapidly from the rolling temperature),

3.1.2 Description of items required (that is, bars, bolts, screws, or studs),

3.1.3 Nuts, if required by purchaser, in accordance with 14.1,3/A193M-08

3.1.4 Supplementary requirements, if any, and st/6d85e668-250f-45d8-b562-b

3.1.5 Special requirements, in accordance with 7.3, 7.5.1, 11.2, 15.1, and 16.1.

3.2 *Coatings*—Coatings are prohibited unless specified by the purchaser (See Supplementary Requirements S13 and S14). When coated fasteners are ordered the purchaser should take special care to ensure that Appendix X2 is thoroughly understood.

4. Common Requirements

4.1 Material and fasteners supplied to this specification shall conform to the requirements of Specification A 962/A 962M. These requirements include test methods, finish, thread dimensions, marking, certification, optional supplementary requirements, and others. Failure to comply with the requirements of Specification A 962/A 962M constitutes nonconformance with this specification. In case of conflict between this specification and Specification A 962/A 962M, this specification shall prevail.

5. Manufacture (Process)

5.1 The steel shall be produced by any of the following processes: open-hearth, basic-oxygen, electric-furnace, or vacuum-induction melting (VIM). The molten steel may be vacuum-treated prior to or during pouring of the ingot or strand casting. 5.2 *Quality*—See Specification A 962/A 962M for requirements.

6. Discard

6.1 A sufficient discard shall be made to secure freedom from injurious piping and undue segregation.

7. Heat Treatment

7.1 Ferritic steels shall be properly heat treated as best suits the high temperature characteristics of each grade. Immediately

4 Withdrawn.

⁵ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org

⁶ Available from Automotive Industry Action Group, 26200 Lahser, Suite 200, Southfield, MI 48034.

⁶ Available from Automotive Industry Action Group (AIAG), 26200 Lahser Rd., Suite 200, Southfield, MI 48033, http://www.aiag.org.

after rolling or forging, the bolting material shall be allowed to cool to a temperature below the cooling transformation range. The materials which are to be furnished in the liquid-quenched condition shall then be uniformly reheated to the proper temperature to refine the grain (a group thus reheated being known as a *quenching charge*) and quenched in a liquid medium under substantially uniform conditions for each quenching charge. Use of water quenching is prohibited for any ferritic grade when heat treatment is part of the fastener manufacturing process. This prohibition does not apply to heat treated bar or to fasteners machined therefrom. The materials that are to be furnished in the normalized or air-quenched condition shall be reheated to the proper temperature to refine the grain and cooled uniformly in air to a temperature below the transformation temperature range. The material, whether liquid-quenched or normalized, shall then be uniformly reheated for tempering. The minimum tempering temperature shall be as specified in Table 2 and Table 3.

Туре						Ferri	tic Stee	els				
Grade	B5				B6 and B6X							
Description	5% Chromium				12 % Chromium							
UNS Designation					S41000 (410)							
			Range		Product Variation Over or Under ^B	١,	Rang	e	Product Over or I			
Carbon			0.10 min		0.01 under		0.08-	-0.15	0.01 ove	r		
Manganese, max			1.00		0.03 over				0.03 ove	0.03 over		
Phosphorus, max			0.040 0.030				0.040)	0.005 over			
Sulfur, max	Sulfur, max				0.005 over	0.005 over 0)	0.005 ov	0.005 over		
Silicon			1.00 max		0.05 over	0.05 over 1		max		0.05 over		
Chromium					0.10	11.5–1		-13.5	0.15			
Molybdenum			0.40-0.6	5	0.05							
Туре						Ferri	tic Stee	els				
Grade			B7, B7M				B16					
Description		(hff	Chromium-Molybdenum ^C				Chromium-Molybdenum-Vanadium					
			Product Variation Range Over or Under ^B			۱,	Range			Product Variation, Over or Under ^B		
Carbon			0.37–0.49 ^D 0.02				0.36-	-0.47	0.02	0.02		
Manganese			0.65-1.1	0	0.04		0.45-	-0.70	0.03			
Phosphorus, max	phorus, max				0.005 over		0.035		0.005 over			
Sulfur, max			0.040		0.005 over		0.040		0.005 over			
ilicon		0.15–0.35 <u>AOTMAT</u>		0.02		0.15-0.35		0.02				
Chromium tandards iteh ai/catalog/standa			0.75-1.20 6085e6c 0.0550f-45d8-b562			-b0.80-1.15071c7d/astr0.051						
Molybdenum			0.15-0.2	5	0.02	0.50-0.65			0.03			
Vanadium							0.25-0.35		0.03			
Aluminum, max % ^E	Numinum, max % ^E					0.015						
Туре				A	ustenitic Steels, ^F CI	asses 1, 1A,	1D, ar	nd 2				
Grade	B8, B8A		B8C, B8CA			B8M, B	B8M, B8MA, B8M2, B8M3		B8P, B8PA			
UNS Designation	UNS Designation S30400 (304)		S34700 (347)		S316		631600 (316)		S30500			
	Range	Product Varia Over or Unde		Range	Product Variation, Over or Under ^B	Range		Product Variation, Over or Under ^B	Range	Product Variation, Over or Under ^B		
Carbon, max	0.08	0.01 over		0.08	0.01 over	0.08	(0.01 over	0.12	0.01 over		
Manganese, max	2.00	0.04 over		2.00	0.04 over	2.00	(0.04 over	2.00	0.04 over		
Phosphorus, max	0.045	0.010 over		0.045	0.010 over	0.045	(0.010 over	0.045	0.010 over		
Sulfur, max	0.030	0.005 over		0.030	0.005 over	0.030	(0.005 over	0.030	0.005 over		
Silicon, max	1.00	0.05 over		1.00	0.05 over	1.00	(0.05 over	1.00	0.05 over		
Chromium	18.0–20.0	0.20		17.0–19.0 0.20		16.0–18	16.0–18.0 0.20		17.0-19.0 0.20			
Nickel	8.0-11.0	0.15 9		9.0-12.0	0.15	10.0–14.0 0.15		0.15	11.0–13.0	0.15		
Molybdenum						2.00-3.	00 (0.10				
Columbium + tantalum				10 x carbon content, min 1.10 max								

TABLE 1 Chemical Requirements (Composition, percent)^A

		Continued							
	Austeniti		3, 1D, and 2						
B8N, B8NA		B8MN, B8MNA		B8MLCuN, B8MLCuNA					
S30451 (304N)		S31651 (316N)		S31254					
Range	Product Variation, Over or Under ⁸	Range	Product Variation, Over or Under ^B	Range	Product Variation, Over or Under ^B				
0.08	0.01 over	0.08	0.01 over	0.020	0.005 over				
					0.03 over				
					0.005 over 0.002 over				
					0.05 over 0.20				
					0.20				
					0.10				
					0.02				
				0.50-1.00					
			Austenitic Steels ^F	, Classes 1, 1A,	and 2				
			B8T, B8TA	· · ·					
			S32100 (321)						
			Range		Product Variation,				
					Over or Under ^B				
					0.01 over				
					0.04 over				
					0.010 over 0.005 over				
					0.05 over				
			17.0-19.0		0.05 over 0.20				
			9.0-12.0		0.15				
) 70 maxG	0.05 under 0.05 under				
					0.05 under				
			0.10 max	ai)	· · ·				
	D	Austeni	itic Steels ^F , Classes 1	C and 1D					
	B8R, B8RA OCUMENT FIEV B8S, B8SA								
	S20910		S21800	321800					
	Range 🔥		n, M_08 Range		Product Variation, Over or Under ^B				
da itala ai/aatala	21		5.10 15030121	400071-7	1/ 0.01 over 93_a193m_0				
					0.06				
Aanganese Phosphorus, max					0.005 over				
•		0.005 over	0.030		0.005 over				
					0.005 over				
	1.00 max	0.05 over	3.5-4.5						
)	0.005 over 0.15 0.20				
	1.00 max	0.05 over	3.5–4.5)	0.15				
	1.00 max 20.5–23.5 11.5–13.5 1.50–3.00	0.05 over 0.25 0.15 0.10	3.5–4.5 16.0–18.0 8.0–9.0		0.15 0.20 0.10				
	1.00 max 20.5–23.5 11.5–13.5 1.50–3.00 0.20–0.40	0.05 over 0.25 0.15 0.10 0.02	3.5–4.5 16.0–18.0 8.0–9.0		0.15 0.20 0.10				
	1.00 max 20.5–23.5 11.5–13.5 1.50–3.00 0.20–0.40 0.10–0.30	0.05 over 0.25 0.15 0.10 0.02 0.05	3.5–4.5 16.0–18.0 8.0–9.0 0.08–0.18		0.15 0.20 0.10 0.01				
	1.00 max 20.5–23.5 11.5–13.5 1.50–3.00 0.20–0.40	0.05 over 0.25 0.15 0.10 0.02 0.05 0.02	3.5–4.5 16.0–18.0 8.0–9.0 0.08–0.18 	3	0.15 0.20 0.10 0.01				
	1.00 max 20.5–23.5 11.5–13.5 1.50–3.00 0.20–0.40 0.10–0.30 0.10–0.30	0.05 over 0.25 0.15 0.10 0.02 0.05 0.02	3.5–4.5 16.0–18.0 8.0–9.0 0.08–0.18 ic Steels ^F , Classes 1,	1A and 1D	0.15 0.20 0.10 0.01				
	1.00 max 20.5–23.5 11.5–13.5 1.50–3.00 0.20–0.40 0.10–0.30 0.10–0.30 B8LN, B8LNA	0.05 over 0.25 0.15 0.10 0.02 0.05 0.02	3.5–4.5 16.0–18.0 8.0–9.0 0.08–0.18 ic Steels ^{<i>F</i>} , Classes 1, B8MLN, E	1A and 1D	0.15 0.20 0.10 0.01				
	1.00 max 20.5–23.5 11.5–13.5 1.50–3.00 0.20–0.40 0.10–0.30 0.10–0.30	0.05 over 0.25 0.15 0.10 0.02 0.05 0.02 Austeniti	3.5–4.5 16.0–18.0 8.0–9.0 0.08–0.18 ic Steels ^F , Classes 1, B8MLN, E S31653	1A and 1D	0.15 0.20 0.10 0.01 				
	1.00 max 20.5–23.5 11.5–13.5 1.50–3.00 0.20–0.40 0.10–0.30 0.10–0.30 B8LN, B8LNA	0.05 over 0.25 0.15 0.10 0.02 0.05 0.02	3.5–4.5 16.0–18.0 8.0–9.0 0.08–0.18 ic Steels ^F , Classes 1, B8MLN, E S31653	1A and 1D	0.15 0.20 0.10 0.01				
	1.00 max 20.5–23.5 11.5–13.5 1.50–3.00 0.20–0.40 0.10–0.30 0.10–0.30 B8LN, B8LNA S30453 Range 0.030	0.05 over 0.25 0.15 0.10 0.02 0.05 0.02 Austeniti Product Variation Over or Under ^B 0.005 over	3.5–4.5 16.0–18.0 8.0–9.0 0.08–0.18 ic Steels ^F , Classes 1, B8MLN, E S31653 n, Range 0.030	1A and 1D	0.15 0.20 0.10 0.01 Product Variation, Over or Under ^B 0.005 over				
	1.00 max 20.5–23.5 11.5–13.5 1.50–3.00 0.20–0.40 0.10–0.30 0.10–0.30 B8LN, B8LNA S30453 Range 0.030 2.00	0.05 over 0.25 0.15 0.10 0.02 0.05 0.02 Austeniti Product Variation Over or Under ^B 0.005 over 0.04 over	3.5–4.5 16.0–18.0 8.0–9.0 0.08–0.18 ic Steels ^F , Classes 1, B8MLN, E S31653 n, Range 0.030 2.00	1A and 1D	0.15 0.20 0.10 0.01 Product Variation, Over or Under ^B 0.005 over 0.04 over				
	1.00 max 20.5-23.5 11.5-13.5 1.50-3.00 0.20-0.40 0.10-0.30 0.10-0.30 B8LN, B8LNA S30453 Range 0.030 2.00 0.045	0.05 over 0.25 0.15 0.10 0.02 0.05 0.02 Austeniti Product Variation Over or Under ^B 0.005 over 0.04 over 0.010 over	3.5–4.5 16.0–18.0 8.0–9.0 0.08–0.18 ic Steels ^F , Classes 1, B8MLN, E S31653 n, Range 0.030 2.00 0.045	1A and 1D	0.15 0.20 0.10 0.01 Product Variation, Over or Under ^B 0.005 over 0.04 over 0.010 over				
	1.00 max 20.5-23.5 11.5-13.5 1.50-3.00 0.20-0.40 0.10-0.30 0.10-0.30 B8LN, B8LNA S30453 Range 0.030 2.00 0.045 0.030	0.05 over 0.25 0.15 0.10 0.02 0.05 0.02 Austeniti Product Variation Over or Under ^B 0.005 over 0.04 over 0.010 over 0.005 over	3.5–4.5 16.0–18.0 8.0–9.0 0.08–0.18 ic Steels ^{<i>F</i>} , Classes 1, B8MLN, E S31653 n, Range 0.030 2.00 0.045 0.030	1A and 1D	0.15 0.20 0.10 0.01 Product Variation, Over or Under ^B 0.005 over 0.04 over 0.010 over 0.005 over				
	1.00 max 20.5-23.5 11.5-13.5 1.50-3.00 0.20-0.40 0.10-0.30 0.10-0.30 B8LN, B8LNA S30453 Range 0.030 2.00 0.045 0.030 1.00	0.05 over 0.25 0.15 0.10 0.02 0.05 0.02 Austeniti Product Variation Over or Under ^B 0.005 over 0.04 over 0.010 over 0.005 over 0.005 over 0.05 over 0.05 over 0.05 over	3.5–4.5 16.0–18.0 8.0–9.0 0.08–0.18 ic Steels ^F , Classes 1, B8MLN, E S31653 n, Range 0.030 2.00 0.045 0.030 1.00	1A and 1D 38MLNA	0.15 0.20 0.10 0.01 Product Variation, Over or Under ^B 0.005 over 0.04 over 0.04 over 0.010 over 0.005 over 0.005 over 0.005 over				
	1.00 max 20.5–23.5 11.5–13.5 1.50–3.00 0.20–0.40 0.10–0.30 0.10–0.30 B8LN, B8LNA S30453 Range 0.030 2.00 0.045 0.030 1.00 18.0–20.0	0.05 over 0.25 0.15 0.10 0.02 0.05 0.02 Austeniti Product Variation Over or Under ^B 0.005 over 0.04 over 0.010 over 0.005 over 0.005 over 0.05 over 0.05 over 0.05 over 0.20	3.5–4.5 16.0–18.0 8.0–9.0 0.08–0.18 ic Steels ^F , Classes 1, B8MLN, E S31653 n, Range 0.030 2.00 0.045 0.030 1.00 16.0–18.0	1A and 1D 38MLNA	0.15 0.20 0.10 0.01 Product Variation, Over or Under ^B 0.005 over 0.04 over 0.010 over 0.005 over 0.005 over 0.005 over 0.005 over 0.005 over 0.005 over 0.020 over 0.20				
	1.00 max 20.5-23.5 11.5-13.5 1.50-3.00 0.20-0.40 0.10-0.30 0.10-0.30 B8LN, B8LNA S30453 Range 0.030 2.00 0.045 0.030 1.00	0.05 over 0.25 0.15 0.10 0.02 0.05 0.02 Austeniti Product Variation Over or Under ^B 0.005 over 0.04 over 0.010 over 0.005 over 0.005 over 0.05 over 0.05 over 0.05 over	3.5–4.5 16.0–18.0 8.0–9.0 0.08–0.18 ic Steels ^F , Classes 1, B8MLN, E S31653 n, Range 0.030 2.00 0.045 0.030 1.00	1A and 1D 38MLNA	0.15 0.20 0.10 0.01 Product Variation, Over or Under ^B 0.005 over 0.04 over 0.04 over 0.010 over 0.005 over 0.005 over 0.05 over				
	S30451 (304N) Range 0.08 2.00 0.045 0.030 1.00 18.0–20.0 8.0–11.0 0.10–0.16 	Austeniti B8N, B8NA S30451 (304N) Product Variation, Over or Under ^B 0.08 0.01 over 2.00 0.04 over 0.045 0.010 over 0.045 0.010 over 0.030 0.005 over 1.00 0.05 over 18.0-20.0 0.20 8.0-11.0 0.15 0.10-0.16 0.01 Image Image Image Image B8R, B8RA S20910 Range	Austenitic Steels, ^e Classes 1A, 1E B8N, B8NA B8MN, B8MNA S30451 (304N) S31651 (316N) Range Product Variation, Over or Under ^B Range 0.08 0.01 over 0.08 2.00 0.04 over 2.00 0.45 0.010 over 0.045 0.030 0.005 over 0.030 1.00 0.05 over 0.030 18.0-20.0 0.20 16.0-18.0 8.0-11.0 0.15 10.0-13.0 2.00-3.00 0.00 0.10-0.16 0.01 0.10-0.16	Austenitic Steels, ^F Classes 1A, 1B, 1D, and 2 B8N, B8NA B8MN, B8MNA S30451 (304N) S31651 (316N) Range Product Variation, Over or Under [#] Range Product Variation, Over or Under [#] 0.08 0.01 over 0.08 0.01 over 2.00 0.04 over 2.00 0.04 over 0.045 0.010 over 0.045 0.010 over 0.030 0.05 over 1.00 0.05 over 1.00 0.05 over 1.00 0.05 over 1.00 0.15 10.0-13.0 0.15 2.00-3.00 0.10 0.10 0.10-0.16 0.01 0.10-0.16 0.01 2.00-3.00 0.10 S32100 (321) Range S32100 (321) Range S32100 (321) S32100 (321) Range Austenitic Steels ^F , Classes 1 B8R, B8RA Colspan="2">S x (C + N) m	Austenitic Steels, ^F Classes 1A, 1B, 1D, and 2 BBN, BBNA BBMLCUN, B S30451 (304N) S31651 (316N) S31254 Range Product Variation, Over or Under [#] Range Product Variation, Over or Under [#] Range 0.08 0.01 over 0.08 0.01 over 0.020 2.00 0.04 over 2.00 0.04 over 1.00 0.030 0.005 over 0.030 0.005 over 0.030 0.045 0.010 over 0.045 0.010 0.020 18.0-20.0 0.20 18.0-18.0 0.20 19.5-20.5 8.0-11.0 0.15 17.5-18.5 17.5-18.5 0.10-0.16 0.01 0.10-0.16 0.01 0.16-0.22 0.10-0.16 0.01 0.10-0.16 0.01 0.16-0.22 0.10-0.16 0.01 0.10-0.16 0.01 0.16-0.22 0.10-0.16 0.01 0.16-0.22 1.00 1.00 1.00 1.00-15 0.030 1.00 1.00 1.00				

^C The Intentional addition of BI, Se, Ie, and PD is not permitted. ^B Product analysis—Individual determinations sometimes vary from the specified limits on ranges as shown in the tables. The several determinations of any individual element in a heat may not vary both above and below the specified range. ^C Typical steel compositions used for this grade include 4140, 4142, 4145, 4140H, 4142H, and 4145H.

^D For bar sizes over 3¹/₂ in. [90 mm], inclusive, the carbon content may be 0.50 %, max. For the B7M grade, a minimum carbon content of 0.28 % is permitted, provided that the required tensile properties are met in the section sizes involved; the use of AISI 4130 or 4130H is allowed. ^E Total of soluble and insoluble.

^F Classes 1 and 1D are solution treated. Classes 1, 1B, and some 1C (B8R and B8S) products are made from solution treated material. Class 1A (B8A, B8CA, B8MA, B8PA, B8TA, B8LNA, B8MLNA, B8MA, and B8MNA) and some Class 1C (B9RA and B8SA) products are solution treated in the finished condition. Class 2 products are solution treated and strain hardened. GNitrogen content is to be reported for this grade.

iTeh Standards (https://standards.iteh.ai) Document Preview

<u>ASTM A193/A193M-08</u>

https://standards.iteh.ai/catalog/standards/sist/6d85e6c8-250f-45d8-b562-b31400071c7d/astm-a193-a193m-08

TABLE 2 Mechanical Requirements — Inch Products

Grade	<u>Diameter, in.</u>	<u>Minimum</u> <u>Tempering</u> <u>Temperature,</u> <u>°F</u>	<u>Tensile</u> <u>Strength,</u> <u>min, ksi</u>	Yield Strength, min, 0.2 % offset, ksi	Elongation in 4D, min, %	Reductic of Area min, %	a, max		
Ferritic Steels									
B5 4 to 6 % chromium	up to 4, incl	<u>1100</u>	<u>100</u>	<u>80</u>	<u>16</u>	<u>50</u>	<u></u>		
13 % chromium B6X	up to 4, incl	<u>1100</u>	<u>110</u>	<u>85</u>	<u>15</u>	<u>50</u>	<u></u>		
13 % chromium B7	up to 4, incl	<u>1100</u>	<u>90</u>	<u>70</u>	<u>16</u>	<u>50</u>	26 HRC		
Chromium-molybdenum	$2^{1/2}$ and under	<u>1100</u>	125	<u>105</u>	<u>16</u>	<u>50</u>	321 HB or 35 HRC		
	over 21/2 to 4	<u>1100</u>	<u>115</u>	<u>95</u>	<u>16</u>	<u>50</u>	321 HB or 35 HRC		
	over 4 to 7	<u>1100</u>	<u>100</u>	<u>75</u>	<u>18</u>	<u>50</u>	321 HB or 35 HRC 235 HB or 99 HRB		
B7M ^A Chromium-molybdenur	n <u>4 and under</u>	<u>1150</u>	100	<u>80</u>	<u>18</u>	<u>50</u>			
	over 4 to 7	<u>1150</u>	<u>100</u>	<u>75</u>	<u>18</u>	<u>50</u>	235 BHN or 99 HRB		
B16 Chromium-molybdenum-vanadium	21/2 and under	1200	125	105	<u>18</u>	<u>50</u>	321 HB or 35 HRC		
	over 21/2 to 4	1200	<u>110</u>	<u>95</u>	<u>17</u>	<u>45</u>	321 HB or 35 HRC		
	over 4 to 8	<u>1200</u>	<u>100</u>	<u>85</u>	<u>16</u>	<u>45</u>	321 HB or 35 HRC		
Grade, Diameter, in.	Heat Treatment [®]	S	Tensile trength, nin, ksi	Yield Strength, min, 0.2 <u>% offset,</u> ksi		duction Area, iin %	Hardness, max		
						50 00			
Classes 1 and 1D; B8, B8M, B8P, B8LN, B8MLN, all diameters			<u>75</u>	<u>30</u>	_		23 HB ^C or 96 HRB		
Class 1: B8C, B8T, all diameters	carbide solution treated AST	<u>FM A193/A</u>	1 <u>75</u> M-08	<u>30</u>	<u>30</u>		23 HB ^C or 96HRB		
Class 1A: B8A, B8CA, B8MA, B8PA, B8TA, B8LNA, B8MLNA, B8NA, B8MNA B8MLCuNA, all diameters	carbide solution treated in the finishe	₫5e6c8-25() <u>£75</u> 5d8-b.	562- <u>30</u> 1400	071 39 d/ast	<u>50</u> -a <u>1</u>	92 HB or 90 HRB		
Classes 1B and 1D: B8N, B8MN, and	carbide solution treated		80	<u>35</u>	<u>30</u>	<u>40</u> <u>22</u>	23 HB ^C or 96 HRB		
B8MLCuN, all diameters Classes 1C and 1D: B8R, all diameters	carbide solution treated		<u>100</u>	<u>55</u>	<u>35</u>	<u>55 2</u>	71 HB or 28 HRC		
Class 1C: B8RA, all diameters	carbide solution treated in the finishe	d	<u>100</u>	<u>55</u>	<u>35</u>	<u>55</u> <u>2</u>	71 HB or 28 HRC		
Classes 1C and 1D: B8S, all diameters	carbide solution treated		95	<u>50</u>	<u>35</u>	<u>55 2</u>	71 HB or 28 HRC		
<u>Classes 1C: B8SA,</u> all diameters	carbide solution treated in the finishe	d	95	<u>50</u>	<u>35</u>	<u>55</u> <u>2</u>	71 HB or 28 HRC		
Class 2: B8, B8C, B8P, B8T, and B8N, ^D	carbide solution treated and strain hardened		<u>125</u>	<u>100</u>	<u>12</u>	<u>35</u> <u>3</u>	21 HB or 35 HRC		
3/4 and under over 3/4 to 1, incl over 1 to 11/4, incl over 11/4 to 11/2, incl			<u>115</u> <u>105</u> 100	80 65 50		35 3	21 HB or 35 HRC 21 HB or 35 HRC 21 HB or 35 HRC 21 HB or 35 HRC		
	carbide solution treated and strain		<u>110</u>	<u>95</u>	<u>15</u>		21 HB or 35 HRC		
3/4 and under over 3/4 to 1 incl Over 1 to 11/4, incl over 1 to 11/2, incl over 1 1/4 to 11/2, incl Class 2B: B8, B8M2 ^D 2 2 and under 2	hardened carbide solution treated and strain hardened		100 95 90 95	80 65 50 75	20 25 30		21 HB or 35 HRC 21 HB or 35 HRC 21 HB or 35 HRC 21 HB or 35 HRC 21 HB or 35 HRC		