INTERNATIONAL STANDARD

Second edition 2013-10-01

Textile machinery — Draw frame for cotton spinning — Vocabulary and principles of construction

Matériel pour l'industrie textile — Cadre pour la filature du coton — Vocabulaire et principes de construction

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 21485:2013</u> https://standards.iteh.ai/catalog/standards/sist/ea12e8c2-2705-4a3d-a0a0e7d2681b5667/iso-21485-2013

Reference number ISO 21485:2013(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 21485:2013</u> https://standards.iteh.ai/catalog/standards/sist/ea12e8c2-2705-4a3d-a0a0e7d2681b5667/iso-21485-2013

COPYRIGHT PROTECTED DOCUMENT

© ISO 2013

The reproduction of the terms and definitions contained in this International Standard is permitted in teaching manuals, instruction booklets, technical publications and journals for strictly educational or implementation purposes. The conditions for such reproduction are: that no modifications are made to the terms and definitions; that such reproduction is not permitted for dictionaries or similar publications offered for sale; and that this International Standard is referenced as the source document.

With the sole exceptions noted above, no other part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Page

Contents

Foreword		
Scope	1	
Terms and definitions1		
1	Basic terms 1	
2	Machine sides, dimensions (see Figure 1)	
3	Machine components (see Figures 2 and 3) 2	
4	Doubling and drafting4	
Annex	Annex A (normative) Principles of construction 6	
Bibliography		

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 21485:2013</u> https://standards.iteh.ai/catalog/standards/sist/ea12e8c2-2705-4a3d-a0a0e7d2681b5667/iso-21485-2013

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. www.iso.org/patents

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ASO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 72, *Textile machinery and machinery and accessories*, Subcommittee SC 1, *Spinning preparatory, spinning, twisting and winding machinery and accessories*.

This second edition can**cels**//and/areplace/sathe/sfirstr/edition2(1SO2/21485:2006), which has been technically revised. e7d2681b5667/iso-21485-2013

Textile machinery — Draw frame for cotton spinning — Vocabulary and principles of construction

Scope

This International Standard establishes a vocabulary of terms related to, and the principles of construction of, draw frames and their components, used for cotton spinning in the textile industry.

NOTE 1 The draw frame design is not required to conform with the figures shown in this International Standard, which are given only as examples of the different types.

NOTE 2 In addition to terms used in English, one of the three official ISO languages, this International Standard gives the equivalent terms in German; these are published under the responsibility of the member body for Germany (DIN). However, only the terms and definitions given in the official language can be considered as ISO terms and definitions.

Terms and definitions

1 Basic terms **iTeh STANDARD PREVIEW**

1.1 draw frame

(standards.iteh.ai)

textile machinery consisting of a *delivery unit* (1.3) employed to straighten and parallelize the fibres by drafting, to homogenize the sliver by means of *doubling* (4.1) and to blend and de-dust the fibres

https://standards.iteh.ai/catalog/standards/sist/ea12e8c2-2705-4a3d-a0a0e7d2681b5667/iso-21485-2013

1.2 autoleveller draw frame

textile machinery consisting of a *delivery unit* (1.3) employed to straighten and parallelize the fibres by drafting, to homogenize the sliver by *doubling* (4.1), to blend and de-dust, if applicable, the fibres and to compensate any measured deviation of the fibre mass by means of a variable draft superimposed on the nominal *draft* (4.2)

1.3

delivery unit

working point for filling a *sliver can* (3.1)

2 Machine sides, dimensions (see Figure 1)

2.1

right side

R

textile machine side located to the right as seen facing toward the direction of fibre flow

Note 1 to entry: See ISO 92.

2.2 left side

L

textile machine side located to the left as seen facing toward the direction of fibre flow

Note 1 to entry: See ISO 92.

Key

- machine depth (without space requirement for deposited sliver cans) a_1
- overall machine depth (including space requirement for deposited sliver cans) a_2
- machine width (without space requirement for deposited sliver cans) b_1
- overall width (including space requirement for deposited sliver cans) b_2
- right side R
- left side L
- 1 feed
- 2 delivery

iTeh STANDARD PREVIEW Space requirement: $a_2 \times b_1$ for $b_2 \le b_1$ (standards.iteh.ai) $a_2 \times b_2$ for $b_2 > b_1$

Figure 3 — Machine components (II)

3.1

sliver can iTeh STANDARD PREVIEW

round or rectangular container for the deposit of card, comber or draw frame sliver

Note 1 to entry: Round sliver cans are defined in ISO 93-1 and ISO 93-2, rectangular cans in ISO 16853.

3.2

ISO 21485:2013

creel [feed] https://standards.iteh.ai/catalog/standards/sist/ea12e8c2-2705-4a3d-a0a0positively driven rollers for pulling **feed** sliver from the sliver can (3.1) or [and] static sliver guides

3.3

sliver guide

device for guiding slivers at the entry to the *drafting system* (3.4)

3.4

drafting system

device with several consecutive roller pairs running at increasing speeds and a *pressure bar* (3.4.1) to draft the infed sliver

3.4.1

pressure bar

static sliver guide component installed in the main drafting zone to guide floating fibres

3.4.2

roll bearing

bearing for the bottom rollers (3.4.4) in the drafting system (3.4)

3.4.3

top rollers

friction-driven or positively driven rollers, self-weighted or with additional load, resting on the bottom roller and gripping and carrying the sliver

[SOURCE: ISO 2205:1975]

3.4.4

bottom rollers

fluted, knurled or smooth rollers

[SOURCE: ISO 2205:1975]

3.5

web guide

device located at the exit of the *drafting system* (3.4) to guide the web into the *sliver funnel* (3.9)

3.6

drafting system support

drafting roller stand

base (e.g. of cast iron) on which the *drafting system* (3.4) is mounted

3.7

cleaning device with suction system

cleaner lips and wipers operating in conjunction with the suction system for cleaning measuring devices and other elements

3.8

drafting system hood

hood for covering the *drafting system* (3.4)

3.9

device for compressing the sliver the sliver

(standards.iteh.ai)

3.10

draw rollers positively driven roller pair for drawing off and **dompressing** the sliver

https://standards.iteh.ai/catalog/standards/sist/ea12e8c2-2705-4a3d-a0a0-3.11 e7d2681b5667/iso-21485-2013

coiler

deposit plate

device for depositing the drafted sliver into the *sliver can* (3.1)

3.12

can plate

device for supporting and rotating the *sliver can* (3.1)

Doubling and drafting 4

4.1

doubling

D

simultaneous feeding of several slivers in order to bring them near each other and compensate the deviation in the mass

4.2

draft

V

attenuation of a fibre structure consisting of one or more individual slivers gripped between pairs of rollers by drawing off at increasing speed, expressed by the relationship of delivery speed v_A to entry speed $v_{\rm E}$ (Example 1) or by the relationship of the entry sliver weight of the fibre structure $Tt_{\rm E}$ to its delivery sliver weight Tt_A (Example 2)

EXAMPLE 1 $v_{\rm E} = 60 \text{ m/min}, v_{\rm A} = 360 \text{ m/min}; V_{\rm drafting system} = \frac{v_{\rm A}}{v_{\rm E}} = \frac{360}{60} = 6$

EXAMPLE 2 Tt_E of the individual slivers = 6 ktex, D = 6, $Tt_A = 6$ ktex: $V_{\text{machine}} = \frac{Tt_E \times D}{Tt_A} = \frac{6 \times 6}{6} = 6$

4.3

autoleveller

device for measuring and compensating sliver weight variations by superimposing a variable draft on the nominal draft (4.2) of the frame

Note 1 to entry: The desired change in draft to compensate sliver weight variations of the incoming slivers takes effect in the main drafting zone.

4.4

measuring instrument

device for continuously registering the sliver weight of the incoming slivers

4.5

actuator

device for calculating and implementing a control speed that effects a change in *draft* (4.2) in the main drafting zone and thus compensates the sliver weight variations of the incoming slivers

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 21485:2013</u> https://standards.iteh.ai/catalog/standards/sist/ea12e8c2-2705-4a3d-a0a0e7d2681b5667/iso-21485-2013