

Designation: B395/B395M - 08

StandardSpecification for U-Bend Seamless Copper and Copper Alloy Heat Exchanger and Condenser Tubes¹

This standard is issued under the fixed designation B395/B395M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope*

- 1.1 This specification² establishes the requirements for condenser, evaporator, and heat exchanger U-bend tubes that are manufactured from seamless copper and copper alloy tube.
- 1.2 The following safety hazard caveat pertains only to the test methods described in this specification.
- 1.2.1 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.
- 1.3 *Units*—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
- 1.4 This specification is applicable to product 2 in. [50 mm] or less, inclusive, in diameter.
- 1.5 The product shall be produced from one of the following coppers or copper alloys, as specified in the ordering information:

Copper or Copper Alloy UNS No.	Previously Used Designation	Type of Metal
C10200	OF ^A	oxygen-free without residual deoxidants
C10300		oxygen-free, extra low phosphorus
C10800		oxygen-free, low phosphorus
C12000	DLP^A	phosphorized, low residual phosphorus
C12200	DHP ^A	phosphorized, high residual
		phosphorus
C14200	DPA ^A	phosphorized, arsenical
C19200		phosphorized, 1 % iron
		•

¹ This specification is under the jurisdiction of ASTM Committee B05 on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.04 on Pipe and Tube.

C23000		red brass
C44300	Type B	admiralty metal
C44400	Type C	admiralty metal
C44500	Type D	admiralty metal
C60800		aluminum bronze
C68700	Type B	aluminum brass
C70400		95-5 copper-nickel
C70600		90-10 copper-nickel
C70620		90-10 copper-nickel-
		(modified for welding)
C71000		80-20 copper-nickel
C71500		70-30 copper-nickel
C71520		70-30 copper-nickel-
		(modified for welding)
C72200		copper-nickel

^A Designations listed in Classification B224

2. Referenced Documents

2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

2.2 ASTM Standards:³

B153 Test Method for Expansion (Pin Test) of Copper and Copper-Alloy Pipe and Tubing

B154 Test Method for Mercurous Nitrate Test for Copper Alloys

B224 Classification of Coppers

B601 Classification for Temper Designations for Copper and Copper Alloys—Wrought and Cast

B846 Terminology for Copper and Copper Alloys

B858 Test Method for Ammonia Vapor Test for Determining Susceptibility to Stress Corrosion Cracking in Copper Alloys

B900 Practice for Packaging of Copper and Copper Alloy Mill Products for U.S. Government Agencies

E3 Guide for Preparation of Metallographic Specimens

E8 Test Methods for Tension Testing of Metallic Materials

E8M Test Methods for Tension Testing of Metallic Materials

Current edition approved April 1, 2008. Published May 2008. Originally approved in 1962. Last previous edition approved in 2002 as B395/B395M – 02. DOI: 10.1520/B0395_B0395M-08.

² For ASME Boiler and Pressure Vessel Code applications see related Specification SB-395 in Section II of that Code.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

[Metric] (Withdrawn 2008)⁴

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E53 Test Method for Determination of Copper in Unalloyed Copper by Gravimetry

E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)⁴

E112 Test Methods for Determining Average Grain Size

E118 Test Methods for Chemical Analysis of Copper-Chromium Alloys (Withdrawn 2010)⁴

E243 Practice for Electromagnetic (Eddy-Current) Examination of Copper and Copper-Alloy Tubes

E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition

E478 Test Methods for Chemical Analysis of Copper Alloys

3. Terminology

- 3.1 For the definitions of terms related to copper and copper alloys, refer to Terminology B846.
 - 3.2 Definitions:
- 3.2.1 *u-bend tube*, n—a tube bent 180° in a single plane into a U-shape.
- 3.2.2 *dual-gage tube*, *n*—a tube which has more than one wall-gage thickness contained within the length of the tube.
- 3.2.3 squareness of cut, n—the maximum deviation of one side of a cross section of tube from the opposite side, when measured against the projected perpendicularity of the plane of the projected center of the tube at the ends.

4. Ordering Information

- 4.1 Orders for product under this specification shall include the following information:
 - 4.1.1 ASTM designation and year of issue, ASTM B395
- 4.1.2 Copper or copper alloy UNS No. designation (Section 6),
 - 4.1.3 Temper (Section 7),
- 4.1.4 *Dimensions*—X-diameter and wall thickness of the tube (see 12.1 and 12.2),
 - 4.1.5 Schedule of bending radii (see 12.2.5),
 - 4.1.6 Length of U-bend tube legs (see 12.2.8),
- 4.1.7 If the product is to be subsequently welded (see Table 1), and
 - 4.1.8 If the product is to be for U.S. Government.
- 4.2 The following options are available and shall be specified at the time of placing the order, when required:
 - 4.2.1 Heat identification or traceability details.
 - 4.2.2 Tension test (see 9.1),
- 4.2.3 Relief anneal of U-bent portion of copper-nickel U-bend tubes (see 7.6),
- 4.2.4 Dual-gage, a schedule of tubes required in dual-gage and length of heavy gage section must be furnished with this option (see 5.2.2 and 12.2.3),
 - 4.2.5 Certification, if required (see 21), and
 - 4.2.6 Mill Test Report, if required (see 22).

4.3 In addition, when material is purchased for agencies of the U.S. Government, it shall be in accordance with the requirements specified in the Supplementary Requirements section, when specified in the contract or purchase order.

5. Materials and Manufacture

- 5.1 Materials:
- 5.1.1 The material of manufacture shall be of such quality and purity that the finished product shall have the properties and characteristics prescribed in this specification for the applicable alloy and temper.
- 5.1.2 In the event heat identification or traceability is required, the purchaser shall specify the details desired.

Note 1—Due to the discontinuous nature of the processing of casting into wrought products, it is not always practical to identify a specific casting analysis with a specific quantity of material.

- 5.2 *Manufacture*:
- 5.2.1 The product shall be manufactured by such hot working, cold working and annealing processes as to produce a uniform wrought structucture in the finished product.
- 5.2.2 Tubes required to be U-bent to a small radius shall, if specified, be furnished as dual-gage tubes.
- 5.2.2.1 These tubes shall be made prior to U-bending with the wall thickness of the central section of the tube length, increased the equivalent of one Stubs' or Birmingham Wire Gage (BWG) thicker than the wall thickness specified for the straight leg portion of the U-bend tube.
- 5.2.2.2 Unless otherwise specified, dual-gage tubes shall be made to constant inside diameter; that is, the increased wall thickness shall be obtained by increasing the outside diameter of the finished tube in the central heavy gage section.
- 55.2.3 The bent portion of the U-bend tube shall be substantially uniform in curvature. ec/astm-b395-b395m-08

6. Chemical Composition

- 6.1 The material shall conform to the chemical composition requirements specified in Table 1 for the copper or copper alloy UNS No. specified in the ordering information.
- 6.1.1 Results of analysis on a product (check) sample shall conform to the composition requirements within the permitted analytical variance specified in Table 1.
- 6.2 These composition limits do not preclude the presence of unnamed elements. By agreement between the manufacturer and purchaser, limits may be established for elements not specified.
- 6.3 Copper Alloy UNS No. C19200—Copper may be taken as the difference between the sum of all the elements analyzed and 100 %. When all the elements in Table 1 are analyzed, their sum shall be 99.8 % minimum.
- 6.4 For copper alloys in which copper is specified as the remainder, copper may be taken as the difference between the sum of all the elements analyzed and 100 %.
- 6.4.1 When all the elements in Table 1 are analyzed, their sum shall be as shown in the following table.

⁴ The last approved version of this historical standard is referenced on www.astm.org.

TABLE 1 Chemical Requirements

	Other Named Elements	10 ppm) K	:	:	:	:	:	:	:	:	:	:	:	:	:	0.05C max	0.02S	0	0.05C max	
	Chromium	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	0
	Phosphorus	:	0.001-0.005	0.005-0.012	0.004-0.012	0.015-0.040	0.015-0.040	0.01-0.04	:	:	:	0.02-0.10	:	i	i	:	0.02 max	g	÷	0.02 max	C
	Antimony	:	:	:	:	:	:	:	i	ŧ	0.02-0.10	i	:	ŧ	ŧ	:	i	i	ŧ	ŧ	
	Arsenic	:	:	:	:	:	0.15-0.50	:	:	0.02-0.06	:	:	0.02-0.35	0.02-0.06	:	:	:	:	:	÷	
Composition,%	Manganese	:	:	:	:	:	:	: 	Ге	h	S	ta	: 111	d	0.30 to	0.8 -1.0max^{G}	1.0 max	1.0	max ^G 1.0 max	1.0 max	
Compo	Zinc	:	:		ıt	t		0.20	remainder	remainder	remainder	remainder	la	remainder	1.0	max 1.0	max ^G 0.50	max 1.0	max 1.0	0.50	max
	Iron	:	i	i	i	1	: ;	0.8–1.2	0.05 max	0.06	0.06	90.0	0.10	max 0.06	max 1.3–1.7	1.0–1.8	1.0–1.8	1.0	max 0.40-1.0	0.40-1.0	
nda	Lead, max	ı.ai	cat	alog	g/sta	and	lar	ds	0.05	520.0	0.07	0.07	0.10	17-20.0	4e 60.0	0.05	0.02	0.05	0.05	0.02	e @
	Nickel, incl Cobalt	:	:	:	:	:	:	:	i	:	:	:	:	:	4.8–6.2	9.0–11.0	9.0–11.0	19.0–23.0	29.0–33.0	29.0–33.0	
	Aluminum	:	;	:	:	:	:	:	÷	i	;	:	5.0-6.5	1.8–2.5	:	i	÷	:	:	i	
	ΠŢ	:	:	:	:	:	:	:	÷	0.9–1.2	0.9–1.2	0.9–1.2	:	:	:	:	:	:	:	:	_
	Copper ^A	99.95 min	99.95	99.95	99.90	min 99.9 min	99.4 min	98.5 min	84.0–86.0	70.0–73.0	70.0–73.0	70.0–73.0	remainder	76.0–79.0	remainder	remainder	86.5 min	remainder	remainder	65.0 min	
Copper or	Copper Alloy UNS No.	C10200 ^{A, B}	C10300 ^A	C10800 ^A	C12000 ^A	C12200⁴	C14200 ^A	G02810	$C23000^D$	$\text{C44300}^{\textit{E}}$	$C44400^{\mathit{E}}$	C44500 ^E	C60800 ^{A, F}	C68700 ^{A, F}	C70400 ^{4,F}	C70600 ^{4,F}	C70620 ^{4,F}	C71000 ^{A,F}	C71500 ^{A,F}	C71520 ^{A, F}	0.400000

A Silver counting as copper.

B This is a high conductivity copper which has, in the annealed condition, a minimum conductivity of 100 % IACS.

C Includes P.

C L + sum of named elements, 99.6 % min.

E Cu + sum of named elements, 99.6 % min.

F Cu + sum of named elements, 99.6 % min.

G When the product is for subsequent welding applications, and so specified by the purchaser, zinc shall be 0.50 %, max, lead 0.02 %, max, phosphorus 0.02 %, max, sulfur 0.02 %, max, and carbon 0.05 %, max.

H Silicon shall be 0.03 % max.

3

Copper Alloy UNS No.	Copper Plus Named Elements, % min
C60800	99.5
C70400	99.5
C70600	99.5
C70620	99.5
C71000	99.5
C71500	99.5
C71520	99.5
C72200	99.8

- 6.5 For copper alloys in which zinc is specified as the remainder, either copper or zinc may be taken as the difference between the sum of all the elements analyzed and 100 %.
- 6.5.1 When all the elements in Table 1 are analyzed, their sum shall be as shown in the following table.

Copper Alloy UNS No.	Copper Plus Named Elements, % min
C23000	99.8
C44300	99.6
C44400	99.6
C44500	99.6
C68700	99.5

7. Temper

- 7.1 Tempers, as defined in Practice B601, are as follows:
- 7.2 Prior to U-bending, tubes of Copper Alloy UNS Nos. C23000, C44300, C44400, C44500, C60800, C68700, C70400, C70600, C70620, C71000, C71500, C71520, and C72200 shall be in the annealed temper (O61), unless otherwise specified in the purchase order.
- 7.3 Prior to bending, U-bend tubes of Copper Alloy UNS Nos. C10200, C10300, C10800, C12000, C12200, and C14200 shall be in light drawn temper (H55). Tubes of Copper Alloy UNS Nos. C70400, C70600, C70620, and C72200 shall, if specified, be made in the light-drawn temper (H55).
- 7.4 Prior to bending, U-bend tubes of Copper Alloy UNS No. C19200 shall be in the annealed (O61) or light drawn temper (H55) as specified.

- 7.5 Prior to bending, U-bend tubes of Copper Alloy UNS No. C71500 or C71520 shall be made in the drawn, stress-relieved temper (HR50), when specified.
- 7.6 The U-bend portion of tubes furnished in Copper Alloy UNS Nos. C23000, C44300, C44400, C44500, C60800, and C68700 shall be relief annealed (HR) after bending. If specified, the U-bend portion of tubes furnished in Copper Alloy UNS Nos. C70400, C70600, C70620, C71000, C71500, C71520, and C72200 shall be relief annealed (HR) after bending.

Note 2—Some tubes, when subjected to aggressive environments, may be subject to stress-corrosion cracking failure because of the residual tensile stresses developed in straightening. For such applications, it is suggested that tubes of Copper Alloy UNS Nos. C23000, C44300, C44400, C44500, C60800, and C68700 be subjected to a stress relieving (HR) thermal treatment subsequent to straightening. If required, this must be specified on the purchase order or contract. Tolerances for roundness and length, and the condition of straightness, for tube so ordered, shall be to the requirements agreed upon by the manufacturer and purchaser.

8. Grain Size of Annealed Tempers

- 8.1 Samples of annealed-temper (O61) tubes selected for test shall be subjected to microscopical examination at a magnification of 75 diameters and shall show uniform and complete recrystallization.
- 8.2 Materials other than Copper Alloy UNS No. C19200 shall have an average grain size within the limits of 0.010 to 0.045 mm.
- 8.3 The requirements of this section do not apply to product of the light-drawn temper (H55) drawn, stress-relieved temper (HR50), or to the U-bent portion of the product.

9. Mechanical Property Requirements

- 9.1 Tensile Strength Requirements:
- 9.1.1 Product specified to meet the requirements of ASME Boiler and Pressure Vessel Code shall have tensile properties as prescribed in Table 2 for product specified in inch-pound

TABLE 2 Tensile Requirements

Copper or Copper Alloy LINE No.		Temper Designation	Tensile	Yield Strongth A	Elongation in
Copper or Copper Alloy UNS No.	Standard	Former	—— Strength, min, ksi ^B	Strength, ^A min, ksi ^B	2 in., min, %
C10200, C10300, C10800, C12000, C12200,	H55	light drawn	36	30	
C14200					
C19200	H55	light drawn	40	35	
C19200	O61	annealed	38	12	
C23000	O61	annealed	40	12	
C44300, C44400, C44500	O61	annealed	45	15	
C60800	O61	annealed	50	19	
C68700	O61	annealed	50	18	
C70400	O61	annealed	38	12	
C70400	H55	light drawn	40	30	
C70600, C70620	O61	annealed	40	15	
C70600, C70620	H55	light drawn	45	35	
C71000	O61	annealed	45	16	
C71500, C71520	O61	annealed	52	18	
For wall thicknesses up to 0.048 in., incl	HR50	drawn, stress-relieved	72	50	12
For wall thicknesses over 0.048 in.	HR50	drawn, stress-relieved	72	50	15
C72200	O61	annealed	45	16	
C72200	H55	light drawn	50	45	

units or Table 3 for product specified in SI units. When tested in accordance with Test Methods E8 or E8M.

10. Performance Requirements

- 10.1 Expansion Test:
- 10.1.1 When specified in the contract or purchaser order, tube specimens selected for test shall withstand the expansion shown in Table 4 when expanded in accordance with Test Method B153.
- 10.1.2 The expanded tube shall show no cracking or other defects visible to the unaided eye.
 - 10.2 Flattening Test:
- 10.2.1 When specified in the contract or purchase order, the flattening test described in the Test Method section in 17.2.1.3 shall be performed.
- 10.2.2 During inspection, the flattened areas of the test specimen shall be free of defects, but blemishes of a nature that do not interfere with the intended application are acceptable.

11. Other Requirements

- 11.1 Mercurous Nitrate Test or Ammonia Vapor Test:
- 11.1.1 The mercurous nitrate or ammonia vapor test is required only for Copper Alloy UNS Nos. C23000, C44300, C44400, C44500, C60800, and C68700. (Warning—Mercury is a definite health hazard and therefore equipment for the detection and removal of mercury vapor produced in volatilization is recommended. The use of rubber gloves in testing is advisable.)
- 11.1.2 The test specimens, cut 6 in. [150 mm] in length from both the U-bend and straight leg length, shall withstand, without cracking, an immersion in the standard mercurous nitrate solution in Test Method B154 or immersion in the ammonia vapor solution as defined in Test Method B858: the straight leg specimens shall include the finished tube ends.
- Note 3—There is no standard test method to evaluate the effectiveness of a relief-anneal (HR) of the U-bend section of copper-nickel or copper-nickel-iron tubes with respect to stress-corrosion cracking susceptibility.

TABLE 4 Expansion Requirements

Temper Designation		Copper or Copper	Expansion of Tube Outside Diameter in		
Standard	Former	Alloy UNS No.	Percent Of Original Outside Diameter		
O61	annealed	C19200	30		
		C23000	20		
		C44300, C44400, C44500	20		
		C60800	20		
		C68700	20		
		C70400	30		
		C70600, C70620	30		
		C71000	30		
		C71500, C71520	30		
		C72200	30		
H55	light-drawn	C10200, C10300, C10800,			
		C12000, C12200	20		
		C14200	20		
		C19200	20		
		C70400	20		
		C70600, C70620	20		
		C72200	20		
HR58	drawn, stress relieved	C71500, C71520	20		

- 11.1.3 Unless otherwise agreed upon between the manufacturer, or supplier, and the purchaser, the manufacturer shall have the option of using either the mercurous nitrate test or the ammonia vapor test. If agreement cannot be reached, the mercurous nitrate test standard shall be utilized.
- 11.1.4 If the ammonia vapor test is selected, the appropriate risk level pH value for the test solution shall be agreed upon by the manufacturer and purchaser, or alternately, if the purchaser defers to the manufacturer's expertise for the selection of the test pH value, the minimum value selected shall be 9.8.
 - 11.2 Nondestructive Examination for Defects:
- 11.2.1 Each tube, prior to bending, shall be subjected to the eddy-current test.
- 11.2.2 Tubes may be tested in the final drawn, annealed, or heat-treated temper or in the drawn temper prior to the final anneal or heat treatment at the option of the manufacturer.

TABLE 3 Tensile Requirements (SI)

0 0 41 1110 11		Temper Designation	Tensile Strength,	Yield	Elongation in
Copper or Copper Alloy UNS No.	Standard	rd Former		Strength, ^A min, MPa	50.8 mm, min, %
C10200, C10300, C10800, C12000, C12200, C14200	H55	light drawn	250	205	
C19200	H55	light drawn	275	240	
C19200	O61	annealed	260	85	
C23000	O61	annealed	275	85	
C44300, C44400, C44500	O61	annealed	310	105	
C60800	O61	annealed	345	130	
C68700	O61	annealed	345	125	•••
C70400	O61	annealed	260	85	
C70400	H55	light drawn	275	205	
C70600, C70620	O61	annealed	275	105	
C70600, C70620	H55	light drawn	310	240	•••
C71000	O61	annealed	310	110	
C71500, C71520:	O61	annealed	360	125	
For wall thicknesses up to 1.2 mm, incl	HR50	drawn, stress-relieved	495	345	12
For wall thicknesses over 1.2 mm	HR50	drawn, stress-relieved	495	345	15
C72200	O61	annealed	310	110	
C72200	H55	light drawn	345	310	

11.2.3 Testing shall follow the procedures of Practice E243.

- 11.2.4 Unless otherwise agreed upon between the manufacturer, or supplier, and the purchaser, the manufacturer shall have the option of calibrating the test equipment using either notch-depth or drilled-hole standards. If agreement cannot be reached, notch-depth standard shall be utilized.
- 11.2.5 The depth of the round-bottom transverse notches and the diameters of the drilled holes in the calibrating tube used to adjust the sensitivity of the test unit are shown in Table 5 and Table 7 for the material specified in the inch-pound system and Table 6 and Table 8 for material specified in the SI system.
- 11.2.6 Tubes that do not actuate the signaling device of the eddy-current tester shall be considered as conforming to the requirements of this test.
- 11.2.7 Tubes causing irrelevant signals because of moisture, soil, and minor mechanical damage may be reconditioned and retested.
- 11.2.8 Such tubes, when retested to the original test parameters, shall be considered to conform if they do not cause output signals beyond the acceptable limits.
- 11.2.9 Tubes causing irrelevant signals because of visible and identifiable handling marks shall be considered in conformance if the tube dimensions are within the prescribed limits and if the tubes conform to the leak test requirements of 11.3.2 or 11.3.3, unless otherwise agreed to by the manufacturer and purchaser.
- 11.3 Each U-bend tube shall be tested to the requirements of either 11.3.2 or 11.3.3.
- 11.3.1 Unless otherwise specified, the manufacturer shall have the option of the leak test to be used.
- 11.3.2 *Hydrostatic Test*—Each tube shall withstand an internal hydrostatic-pressure sufficient to subject the material to a fiber stress of 7000 psi [48 MPa] without evidence of leakage. The tube need not be tested at a hydrostatic pressure of over a gage pressure of 1000 psi [6.9 MPa], unless so specified. The stress shall be determined by the following equation for thin hollow cylinders under tension:

$$P = 2St/(D - 0.8t) \tag{1}$$

where:

P = hydrostatic pressure, psi [MPa],

t =thickness of tube wall, in. [mm],

D = outside diameter of the tube, in. [mm], and

S = allowable stress of the material, psi [MPa].

11.3.3 *Pneumatic Test*—Each tube shall be subjected to an internal air gage pressure of 60 psi [400 kPa], minimum. The product shall maintain pressure and show no evidence of leakage for 5 s. The test method used shall permit visual

TABLE 5 Notch Depth

	Tube Outside Diameter, in.				
Tube Wall Thickness, in.	Over 1/4 to	Over 3/4 to	Over 11/4 to		
	3/4, incl	11/4, incl	2, incl		
Over 0.017–0.032	0.005	0.006	0.007		
Incl, 0.032-0.049	0.006	0.006	0.0075		
Incl, 0.049-0.083	0.007	0.0075	0.008		
Incl, 0.083-0.109	0.0075	0.0085	0.0095		
Incl, 0.109-0.120	0.009	0.009	0.011		

TABLE 6 Notch Depth (SI)

	Tube Outside Diameter, mm				
Tube Wall Thickness, mm	Over 6 to 19,	Over 19 to 32,	Over 32 to 50,		
	incl	incl	incl		
Over 0.43-0.81	0.13	0.15	0.18		
Incl, 0.81 to 1.3	0.15	0.15	0.19		
Incl, 1.3 to 2.1	0.18	0.19	0.20		
Incl, 2.1 to 2.8	0.19	0.22	0.24		
Incl, 2.8 to 3.0	0.23	0.23	0.28		

TABLE 7 Diameter of Drilled Holes

Tube Outside Diameter, in.	Diameter of Drilled Holes, in.	Drill No.
¹ / ₄ to ³ / ₄ , incl	0.025	72
Over 3/4, incl	0.031	68
Over 1-11/4, incl	0.036	64
Over 11/4 -11/2, incl	0.042	58
Over ½ -¾, incl	0.046	56
Over ¾, incl	0.052	55

TABLE 8 Diameter of Drilled Holes (SI)

Tube Outside Diameter, mm	Diameter of Drilled Holes, mm	Drill No.
6.0–19.0, incl	0.635	72
Over 19.0-25.0, incl	0.785	68
Over 25.0-32.0, incl	0.915	64
Over 32.0–38.0, incl	1.07	58
Over 38.0–45.0, incl	1.17	56
Over 45.0-50.0, incl	1.32	55

detection of any leakage, such as by having the tube under water or by the pressure differential method. Any evidence of leakage shall be cause for rejection.

12. Dimensions, Mass, and Permissible Variations

- 7-12.1 *Tube Diameter*—The outside diameter of the straight leg portion of the tube, exclusive of the central heavy gage portion, shall not vary from that specified by more than the amounts shown in Table 9 for product specified in the inch-pound system or Table 10 for product specified in the SI system as measured by "go" and "no-go" ring gages.
 - 12.2 Thickness:
- 12.2.1 *Tubes Ordered to Minimum Wall*—Prior to bending, the wall thickness of the single-gage tubes at the thinnest point shall not be less than the thickness specified. The maximum plus deviation from the specified wall at any point shall not exceed twice the value shown in Table 11 for product specified in the inch-pound system or Table 12 for product specified in the SI system.
 - 12.2.2 Tubes Ordered to Nominal Wall—
- 12.2.2.1 Prior to bending the maximum plus and minus deviation from the nominal wall at any point shall not exceed the values shown in Table 11 for product specified in the inch-pound system or Table 12 for product specified in the SI system
- 12.2.2.2 When tubes are required in dual-gage, the wall thickness of the heavy gage portion, prior to bending, shall conform to the applicable tolerances in Table 11 or Table 12 for the specified heavier gage (Note 4).