INTERNATIONAL STANDARD

Second edition 2013-02-15

Light conveyor belts — Determination of the coefficient of friction

Courroies transporteuses légères — Détermination du coefficient de frottement

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 21182:2013 https://standards.iteh.ai/catalog/standards/sist/8642a8f6-8ca2-4eb7-b92e-27cea0ac51b9/iso-21182-2013

Reference number ISO 21182:2013(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 21182:2013 https://standards.iteh.ai/catalog/standards/sist/8642a8f6-8ca2-4eb7-b92e-27cea0ac51b9/iso-21182-2013

COPYRIGHT PROTECTED DOCUMENT

© ISO 2013

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Page

Contents

Fore	word		iv
1	Scope		
2	Normative references		
3	Terms and definitions		
4	4.1 Dy	namic coefficient of friction	
5	Apparatus (see Figure 2)		
6	Test piec 6.1 Te 6.2 Nu	e st piece material mber and dimensions of test pieces nditioning	
7	Procedui	·e	6
8	8.1 Dy 8.2 Sta	on and expression of results mamic friction, μ_D mamic friction, μ_S mamic friction μ_S atic friction μ_S mathematic friction μ_S (force path diagrams).	
9 Bibli	Test repo	ort (standards.iteh.ai)	9

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 21182 was prepared by Technical Committee ISO/TC 41, *Pulleys and belts (including veebelts)*, Subcommittee SC 3, *Conveyor belts*.

This International Standard is based on EN 1724:1998, prepared by CEN/TC 188.

This second edition cancels and replaces the first edition (ISO 21182:2005), of which it constitutes a minor revision. (standards.iteh.ai)

Introduction

The coefficient of friction of light conveyor belts has to be seen from two different aspects relevant to the choice of the reference material. One aspect is the friction of the underside of the belt. In practice, this is not critical because it is low. Regardless of whether a table of steel or of wood is used, the coefficient of friction is within the range from 0,2 to 0,3 in most cases.

Contrary to this, the top face covers show values over an extended range dependent on their actual function. To achieve this function, the material itself can be modified as well as the surface pattern but the test procedure is the same in every case. So it becomes clear that the chosen steel panel represents a compromise. Its main properties are reproducibility of the surface finish and uncritical friction behaviour against any kind of belt cover.

This International Standard allows comparison of all kinds of conveyor belt to obtain reliable results as a reference. This can be helpful to buyers who need guidance in choosing the right belt for their particular application.

The tests in accordance with this International Standard are limited to dynamic coefficients of friction (μ_D) up to 1,0 and static coefficients of friction (μ_S) up to 1,5. Higher values can show a mixture of friction, adhesion, deformation and other effects occurring, especially where the surface texture is coarse and is therefore unsuitable for this test.

The method using the standardized metallic test panel is intended especially to compare the coefficients of friction of different light conveyor belts. The values received under practice conditions always depend on the frictional partners.eh STANDARD PREVIEW

To determine these effects, it is possible to choose a different frictional partner instead of the panel if required. This is mentioned in the test report.

iTeh STANDARD PREVIEW (standards.iteh.ai)

Light conveyor belts — Determination of the coefficient of friction

1 Scope

This International Standard specifies test methods for determining the dynamic and static coefficients of friction for light conveyor belts according to ISO 21183-1.

2 Normative references

The following documents , in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3574, Cold-reduced carbon steel sheet of commercial and drawing qualities

ISO 4287, Geometrical Product Specifications (GPS) — Surface texture: Profile method — Terms, definitions and surface texture parameters

ISO7500-1, Metallic materials — Verification of static uniaxial testing machines — Part 1: Tension/compression testing machines — Verification and calibration of the force-measuring system

ISO 18573, Conveyor belts — Test atmospheres and conditioning periods

ISO 21183-1, Light conveyor belts — Part <u>1.:Principal(ch</u>aracteristics and applications https://standards.iteh.ai/catalog/standards/sist/8642a8f6-8ca2-4eb7-b92e-27cea0ac51b9/iso-21182-2013

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 dynamic coefficient of friction

 $\mu_{\rm D}$ coefficient expressed by

$$\mu_{\rm D} = \frac{F_{\rm D}}{F_{\rm N}}$$

where

 $F_{\rm D}$ is the dynamic frictional force, sliding friction;

 $F_{\rm N}$ is the normal force.

3.2 static coefficient of friction

 $\mu_{\rm S}$ coefficient expressed by

$$\mu_{\rm S} = \frac{F_{\rm S}}{F_{\rm N}}$$

where

- *F*_S is the static frictional force, "stiction" (break-away force);
- $F_{\rm N}$ is the normal force.

4 Principle

4.1 Dynamic coefficient of friction

A test piece cut from the full thickness of the conveyor belt in the longitudinal or transverse direction is clamped to a table. A metallic test panel subjected to a given normal force is pulled over the test piece at a defined speed. The μ_D value is then determined by calculation, using the dynamic frictional force, F_D , and the normal force (F_N).

4.2 Static coefficient of friction

A metallic test panel is subjected to a normal force as in 4.1. Additionally, a pulling force is exerted on the test panel, generated by a pulling mechanism moving at a defined speed. The μ_S value is determined by calculation, using the static frictional force, F_S , and the normal force (F_N).

5 Apparatus (see Figure 2)

- 5.1 Testing table, on to which the test piece shall be damped. **REVIEW**
- **5.2** Metallic test panel (see Figure 3) having the following dimensions:
- thickness, 0,8 mm;
 ISO 21182:2013
 https://standards.iteh.ai/catalog/standards/sist/8642a8f6-8ca2-4eb7-b92e-27cea0ac51b9/iso-21182-2013
- length, 152 mm;
- testing area, (76 ± 0.5) mm × (131.5 ± 0.5) mm = (100 ± 1) cm².

The test panel shall be made of steel, type CR1 in accordance with ISO 3574, with a hardness of between HRB 60 and HRB 70, with a milled surface and surface roughness, Ra, of 0,9 µm to 1,3 µm in accordance with ISO 4287.

Because the surface can change due to the abrasion of the test piece, the metallic test panel should be replaced after a maximum of 50 applications, but after one day of use at the latest.

Because the test panel is not stainless, it shall be kept in its original pack in a dry place until first used. The personnel handling the panel shall wear clean cotton gloves and touch the panel only at the edges.

5.3 Mass, generating a normal force of 50 N \pm 1 N together with the metallic test panel. The mass shall be made of steel having a density of 7,85 g/cm³ and have the following dimensions:

- length (120 ± 0,2) mm;
- width (75 ± 0,2) mm;
- height $(71 \pm 0,2)$ mm.

5.4 Device for the measurement of the frictional force

5.4.1 Load cell, with a range up to 100 N.

The force measuring system shall be in accordance with ISO 7500-1, class of machine 3 or better (e.g. class of machine 2).

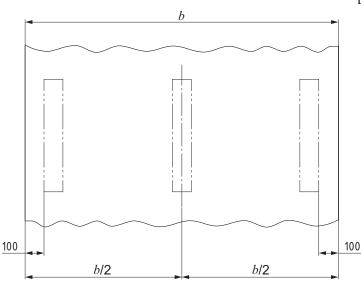
5.4.2 Recording instrument for recording the signal of the load cell

5.5 Pulling mechanism, for example a tensile testing machine, to produce a uniform relative motion between test piece and metallic test panel.

5.6 **Deflection roller**, having a diameter of 40 mm to 50 mm and ball bearings to ensure smooth rotation.

5.7 Pulling cable, parallel to the sliding surface and with a low elasticity, e.g. steel cable with a diameter of approximately 1 mm.

6 Test piece


6.1 Test piece material

Test piece material shall be new, unused ("virgin"), but shall not be tested sooner than five days after manufacture. It shall be free from contamination and superficial damage.

6.2 Number and dimensions of test pieces

Three test pieces shall be cut from the full thickness of the conveyor belt in the longitudinal direction [see Figure 1 a)] and/or/the transverse direction [see Figure 1 a)] and/or/the transverse direction [see Figure 1 a)] 2-4eb7-b92e-27cea0ac51b9/iso-21182-2013

Dimensions in millimetres

a) Distribution of test piece selection in longitudinal direction