# INTERNATIONAL STANDARD

ISO 13844

Second edition 2015-03-01

Plastics piping systems —
Elastomeric-sealing-ring-type socket
joints for use with plastic pressure
pipes — Test method for leaktightness
under negative pressure, angular
deflection and deformation

iTeh STANDARD PREVIEW
Systèmes de canalisations en plastiques — Assemblages par

Systèmes de canalisations en plastiques — Assemblages par s'emboîture à bague d'étanchéité en élastomère pour les tubes sous pression plastiques — Méthode d'essai pour l'étanchéité sous pression négative, déviation angulaire et déformation

https://standards.iteh.ai/catalog/standards/sist/38baeb07-651e-440d-a8c6-34168c255738/iso-13844-2015



## iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 13844:2015 https://standards.iteh.ai/catalog/standards/sist/38baeb07-651e-440d-a8c6-34168c255738/iso-13844-2015



#### COPYRIGHT PROTECTED DOCUMENT

© ISO 2015

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

| Con   | ents                             |    |
|-------|----------------------------------|----|
| Forew | vord                             | iv |
| 1     | Scope                            | 1  |
| 2     | Principle                        | 1  |
| 3     | Test parameters and requirements | 1  |
| 4     | Apparatus                        | 1  |
| 5     | Test pieces                      | 2  |
| 6     | Procedure                        | 3  |
| 7     | Test report                      | 3  |
| Annex | A (normative) Test parameters    | 5  |

# iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 13844:2015 https://standards.iteh.ai/catalog/standards/sist/38baeb07-651e-440d-a8c6-34168c255738/iso-13844-2015

#### **Foreword**

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see <a href="www.iso.org/directives">www.iso.org/directives</a>).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see <a href="www.iso.org/patents">www.iso.org/patents</a>).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 138, Plastics pipes, fittings and valves for the transport of fluids, Subcommittee SC 5, General properties of pipes, fittings and valves of plastic materials and their accessories — Test methods and basic specifications.

https://standards.itch.ai/catalog/standards/sist/38baeb07-651e-440d-a8c6-

This second edition cancels and replaces the first edition (ISO 13844:2000) which has been technically revised. The reason for modification is for applicability to other plastics materials, other sizes, and/or other test conditions and alignment with texts of other standards on test methods.

The modifications are the following:

- no material is mentioned;
- test parameters are omitted, although the original test parameters can be found in Annex A;
- editorial changes have been introduced.

# Plastics piping systems — Elastomeric-sealing-ring-type socket joints for use with plastic pressure pipes — Test method for leaktightness under negative pressure, angular deflection and deformation

WARNING — Persons using this International Standard should be familiar with normal laboratory practice, if applicable. The use of this International Standard may involve hazardous materials, operations, and equipment. This International Standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this International Standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

#### 1 Scope

This International Standard specifies a method for testing the leak tightness under negative pressure, angular deflection, and deformation of assembled joints between elastomeric-sealing-ring-type sockets made of plastic or metal and plastic pressure pipes.

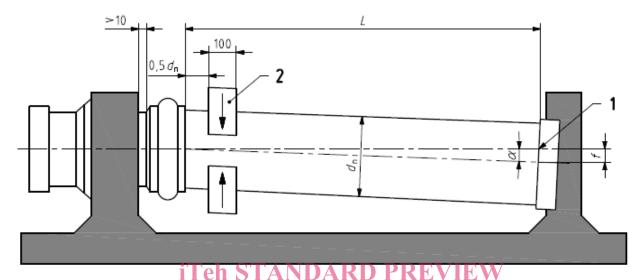
## 2 Principle iTeh STANDARD PREVIEW

A test piece consisting of a plastic pipe mounted into a socket is exposed within a specified temperature range to two specified negative internal pressures for a specified test period, while the pipe is being subjected to an angular deflection in the socket and to deformation. During the test, the test piece is monitored for signs of leakagets, itch ai/catalog/standards/sist/38baeb07-651e-440d-a8c6-

34168c255738/iso-13844-2015

#### 3 Test parameters and requirements

The test parameters of the standard which refers to this test standard shall be used and the requirements shall be fulfilled. If one or more parameters are not given in the referring International Standard, the ones given in Annex A shall apply.


The following test parameters should be given by the standard which refers to this test standard:

- a) test medium;
- b) test pressure (bar or MPa):
- c) test duration (h);
- d) test temperature (°C);
- e) free length (mm).

#### 4 Apparatus

- **4.1 Framework**, comprising at least two fixing devices, one of which is movable, to allow angular deflection to be applied to the test joint, while a negative air pressure (partial vacuum) is being applied.
- **4.2 Vacuum gauge**, having an accuracy of ±1 % at the measured values.

- **4.3 Equipment**, designed to produce a deforming force on the pipe spigot at a specified distance from the mouth of the socket. A typical arrangement is shown in <u>Figure 1</u>.
- **4.4 Vacuum source (pump)**, capable of producing in the test piece the partial vacuum specified in the referring International Standard (see 6.6).
- **4.5 Isolation valve**, between the test piece and the vacuum pump (see <u>6.6</u>).



Key

- starting point for measuring and adjusting the angle of deflection a. ai)
- 2 for pipes where deformation is required by the referring International Standard, a pair of clamps to deform the pipe (see <u>6.2</u>) <u>ISO 13844:2015</u>
- L free length of the pipe between the socket mouth and the end-seal action of the pipe between the socket mouth and the end-seal action.
- $d_{\rm n}$  nominal outside diameter of the pipe

Figure 1 — Typical test arrangement

NOTE The deflection, f, and the angle of deflection,  $\alpha$ , are related by the equation  $f = L\sin\alpha$ . For  $\alpha = 2^{\circ}$ , the deflection is f = 0.035 L.

#### 5 Test pieces

The test piece shall comprise an assembly of a plastic pipe section mounted into the socket to be tested.

The fittings and pipes shall not be tested until 24 h after their production. For practical reasons, the manufacturer may wait a shorter time before testing. In case of dispute, a duration of 24 h shall apply.

The assembly shall be carried out in accordance with the socket manufacturer's instructions.

A pipe of the same nominal pressure (PN) or the same pipe series S as that of the socket shall be used for the test.

NOTE The mean outside diameter,  $d_{\rm em}$ , of the pipe should preferably conform to the minimum specified value, and the socket dimensions (mean inside diameter,  $d_{\rm im}$ , and the diameter of the groove for housing the sealing ring) should preferably conform to the maximum values stated by the manufacturer, in order to have dimensions as close as possible to the extreme limits of their relevant tolerances.

#### 6 Procedure

- **6.1** Secure the socket, without any deformation, to the solid framework and align the pipe section with the axis of the socket.
- **6.2** Apply the deformation to the pipe in the vertical plane, as required by the referring International Standard, using a pair of 100 mm wide clamps placed at a distance of  $0.5d_n$  from the mouth of the test socket. Measure the deformation at the face of the clamp adjacent to the mouth of the socket.
- **6.3** For pipes where no deformation is required by the referring International Standard, carry out procedures given in <u>6.4</u> to <u>6.6</u> without applying the deforming force.
- **6.4** By inclining the pipe in the test apparatus, determine the free angle of deflection,  $\alpha_{\text{free}}$ , which the joint can tolerate without forcing.

If the free angle of deflection is greater or equal to the required one, firmly anchor the pipe to maintain the deflected pipe in this position for the remainder of the test.

If the free angle of deflection is less than the required one, carry out the test at the required deflection measured at the starting point (see Figure 1), by forcing the pipe to that position.

- **6.5** Carry out the procedure of <u>6.6</u> under the following conditions:
- a) with the angular deflection applied in the vertical plane while constantly inspecting for and recording any signs of leakage;
- b) with the specified temperature constant to within ±2 °C.
- 6.6 Apply a negative pressure as specified in the referring International Standard to the test piece until a constant gauge pressure is achieved 168c255738/iso-13844-2015

Isolate the vacuum pump from the test piece, monitor the pressure for the specified test duration, and record any change in the negative pressure. If the change in negative pressure exceeds 0,05 bar (0,005 MPa), stop the test.

Unless the change in negative pressure was not more than 0,05 bar (0,005 MPa), apply a further negative pressure as specified in the referring International Standard to the test piece until a second constant gauge pressure is achieved.

Again, isolate the vacuum pump from the test piece, monitor the pressure for the second specified test duration and record any change in negative pressure.

#### 7 Test report

The test report shall include the following information:

- a) a reference to this International Standard (i.e. ISO 13844:2014) and the referring International Standard;
- b) the nominal pressure class or S series of the components [e.g. fitting(s), pipe] comprising the joint(s) under test;
- c) all details necessary for identification of the test pieces, including the nominal size of the pipes and fittings used to produce the test pieces, the type of material, and the manufacturer's code;
- d) the angle of deflection,  $\alpha$ , used for the test;
- e) the test temperature;
- f) the test duration;

#### ISO 13844:2015(E)

- g) the test procedure;
- h) the amount of deformation, if applicable (see 6.2 and 6.3);
- i) information on the leak tightness of the joint including the pressure at which a leakage occurred (if any);
- j) any factors which may have affected the results, such as any incidents or any operating details not specified in this International Standard;
- k) the date of the test.

## iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 13844:2015 https://standards.iteh.ai/catalog/standards/sist/38baeb07-651e-440d-a8c6-34168c255738/iso-13844-2015

## Annex A

(normative)

### **Test parameters**

The test parameters in <u>Table A.1</u> shall be used, if applicable.

Table A.1 — Test parameters

| Test<br>medium                                                        | Test duration                              | Test<br>temperature | Deformation | Angle of deflection | Test pressure                                                                                                                |  |  |
|-----------------------------------------------------------------------|--------------------------------------------|---------------------|-------------|---------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|
| Air                                                                   | 15 min followed by 15 min (See Figure A.1) | (20 ± 5) °C         | 5 %a        | 2°                  | $(-0.1 \pm 0.02)$ bar $[-(0.01 \pm 0.002)$ MPa] followed by $(-0.8 \pm 0.02)$ bar $[-(0.08 \pm 0.002)$ MPa] (See Figure A.1) |  |  |
| Only required for pipes of series S16 and above (i.e. thinner walls). |                                            |                     |             |                     |                                                                                                                              |  |  |

The length of the pipe section shall be such that the free length, *L*, between the socket mouth and the end-seal is equal to five times the nominal outside diameter of the pipe with a minimum of 500 mm and a maximum of 1 500 mm.

NOTE The first negative pressure is approximately 6.9 bar absolute. The second negative pressure is approximately 6.2 bar absolute ards. iteh. ai/catalog/standards/sist/38baeb07-651e-440d-a8c6-

34168c255738/iso-13844-2015