
International Standard @ I 538
~~~ ~ 

INTERNATIONAL ORGANIZATION FOR STANDAROIZATIONOMEWYHAPOAHAfl OPrAHHJAUHfl no CTAHAAF’TH3AUHM«)RGANlSATlON INTERNATIONALE DE NORMALISATION 

Programming languages - ALGOL 60 
L 

Langages de programmation ALGOL 60 

First edition - 1984-10-15 

~i 1 
ob 

UDC 681.3.06 : 800.92 
Descriptors : programming languages, algol, specifications. 

Ref. No. IS0 1538-1984 (E) 

Price based on 18 pages 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 1538:1984
https://standards.iteh.ai/catalog/standards/sist/d8d8c2b2-3c0e-4d32-8a4c-

d25998157337/iso-1538-1984



Foreword 
IS0 (the International Organization for Standardization) is a worldwide federation of 
national standards bodies ( IS0 member bodies). The work of preparing International 
Standards is normally carried out through IS0 technical committees. Every member 
body interested in a subject for which a technical committee has been established has 
the right to be represented on that committee. International organizations, govern- 
mental and non-governmental, in liaison with ISO, also take part in the work. 

Draft International Standards adopted by the technical committees are circulated to 
the member bodies for approval before their acceptance as International Standards by 
the IS0  Council. They are approved in accordance with IS0  procedures requiring at 
least 75 % approval by the member bodies voting. 

International Standard IS0 1538 was prepared by Technical Committee ISO/TC 97, ln- 
formation processing systems. 

This International Standard replaces ISO/R 1538 (withdrawn in 1977) of which it con- 
stitutes a revision. 

IS0 Recommendation 1538 was a compilation of several source documents. The basic 
one [developed under the auspices of the International Federation for Information Pro- 
cessing (IFIP), whose contributions are acknowledged1 was the Revised Report on the 
Algorithmic Language ALGOL 60. 

The text presented in this International Standard is based on the Modified Report on 
the Algorithmic Language ALGOL 60, which is a minor technical revision and a textual 
clarification of the Revised Report, as established by IFIP. For reasons of IS0 editorial 
policy the original introduction which is irrelevant to an International Standard has 
been deleted and some introductory clauses have been added instead. 

O International Organization for Standardization, 1984 

Printed in Switzerland 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 1538:1984
https://standards.iteh.ai/catalog/standards/sist/d8d8c2b2-3c0e-4d32-8a4c-

d25998157337/iso-1538-1984



INTERNATIONAL STANDARD I S 0  1538-1984 (E) 

Programming Languages - ALGOL 60 

O Introduction 

In this International Standard consistent use is made of 
ALGOL60 as the name of the language, rather than just 
ALGOL, in order to avoid confusion with ALGOL 68 which is a 
completely different language. It is recommended that the 
language defined in this International Standard be referred to 
as STANDARD ALGOL 60. 

kc 

Whenever the name ALGOL is used in this International Stan- 
dard it is to mean ALGOL 60, not ALGOL 68, unless it is clear 
from the context that no specific language is indicated. 

1 Scope and field of application 

This International Standard defines the algorithmic program- 
ming language ALGOL 60. Its purpose is to facilitate inter- 
change and promote portability of ALGOL 60 programs be- 
tween data processing systems. 

ALGOL 60 is intended for expressing a large class of numerical 
processes in a form sufficiently concise for direct automatic 
translation into the language of programmed automatic com- 
puters. 

i- 

This International Standard specifies: 

a) the syntax and semantics of ALGOL 60; 

b) characteristics of programs written in ALGOL 60, and 
of implementations of that language, required for confor- 
mance to this International Standard. 

This International Standard does not specify: 

a) 
left undefined or said to be undefined; 

results of processes or other issues, that are, explicitly, 

b) questions of hardware representation (these may be the 
subject of another International Standard), or of implemen- 
tation; 

c) 
this will be reported; 

the way non-valid programs are to be rejected, and how 

d) 
actual data processing system. 

requirements and rules for executing programs on an 

2 Reference 

ISOiTR 1672, Hardware representation o f  ALGOL basic sym- 
bols in the I S 0  7-bit coded character set for information pro- 
cessing interchange. 

3 Definitions 

For the purpose of this International Standard the following 
definitions apply: 

3.1 valid program: A text written in the ALGOL 60 
language that conforms to the rules for a program defined in 
this International Standard. 

3.2 
was intended to be a program. 

non-valid program: A text that does not conform, but 

3.3 processor: A compiler, translator or interpreter, in com- 
bination with a data processing system, that accepts an in- 
tended program, transcribed in a form that can be processed by 
that data processing system, reports whether the intended pro- 
gram is valid or not, and if valid executes it, if that is being 
requested. 

3.4 
ments that describe 

implementation : A processor, accompanied with docu- 

a) 
ware) in which it will work; 

its purpose, and the environment (hardware and soft- 

b) its intended properties, including 

- the particular hardware representation of the 
language, as chosen; 

the actions taken, when results or issues occur that 
are undefined in this International Standard; 

- 

- conventions for issues said to be a question of 
implementation ; 

1 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 1538:1984
https://standards.iteh.ai/catalog/standards/sist/d8d8c2b2-3c0e-4d32-8a4c-

d25998157337/iso-1538-1984



IS0  1538-1984 (E) 

c) with regard to the implemented language, all dif- 
ferences from, restrictions to, or extensions to the language 
defined in this International Standard; 

d) its logical structure; 

e) the way to put it into use. 

3.5 conforming implementation : An implementation con- 
forming to this International Standard by accepting valid pro- 
grams as being valid, by rejecting non-valid programs as being 
non-valid and by executing valid programs in accordance with 
the given rules. 

3.6 
as defined by the implementation. 

implemented language: The version of the language 

3.7 conforming language version: A version of the 
language, defined by a conforming implementation that 

a) 
in this International Standard; 

does not contain any rule conflicting with those defined 

b) does not contain any rule not provided for in this Inter- 
national Standard, except such rules as, either said to be in- 
tentionally and explicitly a question of implementation, or 
otherwise being outside the scope of this International 
Standard. 

3.8 extension : A rule in the implemented language that 

a) is not given in this International Standard; 

b) does not cause any ambiguity when added to this Inter- 
national Standard (but may serve to remove a restriction); 

c) is within the scoDe of this International Standard. 

4 Conformance 

4.1 Requirements 

Conformance to this International Standard requires 

a) for a program, that it shall be a valid program; 

b) 
plementation ; 

for an implementation, that it shall be a conforming im- 

c) 
forming language version. 

for the implemented language, that it shall be a con- 

4.2 Quantitative restrictions 

The requirements specified in 4.1 shall allow for quantitative 
restrictions to rules stated or implied as having no such restric- 
tion in this International Standard, but only if they are fully 
described in the documents with the implementation. 

4.3 Extensions 

An implementation that allows for extensions in the im- 
plemented language is considered to conform to this Interna- 
tional Standard, notwithstanding 4.1, if 

a) it would conform when the extensions were omitted; 

b) 
tation ; 

the extensions are clearly described with the implemen- 

c) while accepting programs that are non-valid according 
to the rules given in clause 6 of this International Standard, 
it provides means for indicating which part, or parts, of a 
program would have led to its rejection, had no extension 
been allowed. 

Valid programs using extensions shall be described as "con- 
forming to IS0 1538 but for the following indicated parts". 

4.4 Subsets 

Conformance to a subset specified in this International Stan- 
dard means conformance to the subset rules as if they were the 
only rules in the language. 

5 Tests 

Whether an implementation is a conforming implementation or 
the implemented language is a conforming language version 
may be decided by a sequence of test programs. If there is any 
uncertainty or doubt regarding acceptance of these programs 
then the conclusions drawn from the actual behaviour of the 
processor will prevail over those derived from its accompanying 
documents. 

6 Description o f  the reference language 

The detailed description of the reference language given herein 
reproduces, without modification, the text taken from the 
Modified Report (see the foreword), the contents of which are 
the following : 

1 Structure of the language 

1.1 Formalism for syntactic description 

-d 

2 
concepts 

2.1 Letters 

2.2 Digits and logical values 

2.3 Delimiters 

2.4 Identifiers 

2.5 Numbers 

2.6 Strings 

2.7 Quantities, kinds and scopes 

2.8 Values and types 

Basic symbols, identifiers, numbers, and strings. Basic 

2 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 1538:1984
https://standards.iteh.ai/catalog/standards/sist/d8d8c2b2-3c0e-4d32-8a4c-

d25998157337/iso-1538-1984



IS0 1538-1984 (E) 

3 Expressions 
3.1 Variables 
3.2 Function designators 
3.3 Arithmetic expressions 
3.4 Boolean expressions 
3.5 Designational expressions 

4 Statements 
4.1 Compound statements and blocks 
4.2 Assignment statements 
4.3 GO to statements 

4.4 Dummy statements 
4.5 Conditional statements 
4.6 For statements 
4.7 Procedure statements 

5 Declarations 
5.1 Type declarations 
5.2 Array declarations 
5.3 Switch declarations 
5.4 Procedure declarations 

L 

Appendix 1 - Subsets 
Appendix 2 - The environmental block 

Bibliography 

Alphabetic index of definitions of concepts and syntactic units 

I .  Structure of the language 
The algorithmic language has two different kinds of representation- 
reference and hardwars-and the development described in the 
sequel is in terms of the reference representation. This means that all 
objects defined within the language are represented by a given set of 
symbols-and it is only in the choice of symbols that other repre- 
sentations may differ. Structure and content must be the same for all 
representations. 

Reference language 
1. I t  is the defining language. 
2. The characters are determined by ease of mutual understanding 

and not by any computer limitations, coder's notation, or pure 
mathematical notation. 

3. It is the basic reference and guide for compiler builders. 
4. It is the guide for all hardware representations. 

Hardwure represenfntions 
Each one of these: 
1. is a condensation of the reference language enforced by the 

2. uses the character set of a particular computer and is the language 

3. must be accompanied by a special set of rules for transliterating to 

It should be particularly noted that throughout the reference 
language underlining in typescript or manuscript, or boldface type in 
printed copy, is used to represent certain basic symbo!s (see Sections 
2.2.2 and 2.3). These are understood to have no relation to the 
individual letters of which they are composed. In the reference 
language underlining or boldface is used for no other purpose. 
The purpose of the algorithmic language is to describe compu- 

tational processes. The basic concept used for the description of 
calculating rules is the well-known arithmetic expression containing 
as constituents numbers, variables, and functions. From such 
expressions are compounded, by applying rules of arithmetic 
composition, self-contained units of the language-explicit formulae 
-called assignment statements. 
To show the flow of computational processes, certain non-arith- 

metic statements and statement clauses are added which may 
describe, e.g. alternatives, or iterative repetitions of computing 
statements. Since it is sometimes necessary for the function of these 
statements that one statement refers to another, statements may be 
provided with labels. A sequence of statements may be enclosed 
between the statement brackets begin and end to form a compound 
statement. 
Statements are supported by declarations which are not themselves 

computing instructions, but inform the translator of the existence 
and certain properties of objects appearing in statements, such as the 
class of numbers taken on as values by a variable, the dimension of 
an array of numbers, or even the set of rules defining a function. A 
sequence of declarations followed by a sequence of statements and 
enclosed between begin and end constitutes a block. Every decla- 
ration appears in a block in this way and is valid only for that block. 
A program is a block or a compound statement that is contained 

only within a fictitious block (always assumed to be present and 
called the environmental block), and that makes no use of statements 
or declarations not contained within itself, except that it may invoke 
such procedure identifiers and function designators as may be 
assumed to be declared in the environmental block. 
The environmental block contains . procedure declarations of 

standard functions, input and output operations, and possibly other 

limited number of characters on standard input equipment; 

accepted by a translator for that computer; 

or from reference language. 

3 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 1538:1984
https://standards.iteh.ai/catalog/standards/sist/d8d8c2b2-3c0e-4d32-8a4c-

d25998157337/iso-1538-1984



IS0  1538-1984 (E) 
operations to be made u:.ailable without declaration within the 
program. It also contains the fictitious declaration, and initialisation, 
of own variables (see Section 5). 

In  the sequel the syntax and semantics of the language will be 
given. 
Whenever the precision of arithmetic is stated as being in general 

not specified, or the outcome of a certain process is left undefined or 
said to be undefined, this is to be interpreted in the sense that a 
program only fully defines a computational process if the accom- 
panying information specifies the precision assumed, the kind of 
arithmetic assumed, and the course of action to be taken in all such 
cases as may occur during the execution of the computation. 

1.1 .  Formalism for syntactic description 
The syntax will be described with the aid of metalinguistic formulae 
(Backus, 1959). Their interpretation is best explained by an example: 

Sequences of characters enclosed in the brackets (> represent 
metalinguistic variables whose values are sequences of symbols. The 
marks :: = and 1 (the latter with the meaning of ‘or’) are metalin- 
guistic connectives. Any mark in a formula, which is not a variable 
or a connective, denotes itself (or the class of marks which are 
similar to it). Juxtaposition of marks and/or variables in a formula 
signifies juxtaposition of the sequences denoted. Thus the formula 
above gives a recursive rule for the formation of values of the vari- 
able (ab). It indicates that (ab) may have the value ( or [ or that 
given some legitimate value of (ab), another may be formed by 
following it with the character ( or by following it with some value 
of the variable (d). If the values of (d) are the decimal digits, some 
values of (ab) are: 

[(((1(37( 
(12345( 
((( 
186 

In order to facilitate the study, the symbols used for distinguishing 
the metalinguistic variables (i.e. the sequences of characters appear- 
ing within the brackets () as ab in the above example) have been 
chosen to be words describing approximately the nature of the 
corresponding variable. Where words which have appeared in this 
manner are used elsewhere in the text they will refer to the corres- 
ponding syntactic definition. In addition some formulae have been 
given in more than one place. 

Definition: 
(empty) : : = 
(i.e. the null string of symbols). 

2. Basic symbols, identifiers, numbers, and strings. Basic concepts 
The reference language is built up from the following basic symbols: 
(basic symbol) : : = (letter)l(digit)l(logical value)l(delimiter) 

2.1. Letters 
(letter) :: = a jb (c ld (e l f lg lh ( i ) j l k l l lmln /o lp )q l r l s ( t lu l v~~~x~~~z  

I ~ I ~ I ~ l ~ I ~ I ~ I ~ I ~ I ~ l J l ~ l L l M l N f o l P l  QlRlslTl UI VI WI 
XI YIZ 

This alphabet may arbitrarily be restricted, or extended with any 
other distinctive character (i.e. character not coinciding with any 
digit, logical value or delimiter). 
Letters do not have individual meaning. Ttey are used for forming 

identifiers and strings (see Sections 2.4 Identifiers, 2.6 Strings). 
Within this report the letters (from an extended alphabet) r, 8, 
and fi are sometimes used and are understood as not being available 
to the programmer. If an extended alphabet is in use, that does 
include any of these letters, then their uses within this report must be 
systematically changed to other letters that the extended alphabet 
does not include. 

2.2. Digits and logical values 
2.2.1. Digits 
(digit) :: = 011/2)3(415(6/7(819 
Digits are used for forming numbers, identifiers, and strings. 

2.2.2. Logical values 
<logical value) : : = truelfaise 

4 

The logical values have a fixed obvious meaning. 

2.3. Delimiters 
(delimiter) : : = (operator) I( separator) ((bracket)l( declarator) 1 
(operator) : : = (arithmetic operator)l(reiationai operator)/ 

(arithmetic operator) : : = + I - 1 x 1 / 1 +  It 
(relational operator) : : = < I < 1 = I > I > I # 
(logical operator) : : = = I 
(sequential operator) :: = go toliflthenlelselforldo 
(separator) ::= , I . \ I O ~ : \ ; ~ :  = Istep)untillwhilelcomment 
(bracket) :: = (l)\[I]IrI’lùeginlend 
(declarator) : : = ownlBooleanlinteger /reallarrayIswitchIprocedure 
(specificator) : : = stringliabeilvniue 
Delimiters have a fixed meaning which for the most part is obvious 
or else will be given at the appropriate place in the sequel. 
Typographical features such as blank space or change to a new line 

have no significance in the referencekmguage. They may, however, 
be used freely for facilitating reading. 
For the purpose of including text among the symbols of a program 

the following ‘comment’ conventions hold: 
The sequence is equivalent to 
;comment (any sequence of zero or more 

characters not containing ;); ? 

begin comment (any sequence of zero 
or more characters not containing ;); 

end (any sequence of zero or more basic 
end 

By equivalence is here meant that any of the three structures shown 
in the left hand column may be replaced, in any occurrence outside of 
strings, by the symbol shown on the same line in the right hand 
column without any effect on the action of the program. It is further 
understood that the comment structure encountered first in the text 
when reading from left to right has precedence in being replaced 
over later structures contained in the sequence. 

(specificator) 

(logical operator)((sequentiai operator) 

I I\ 1 v 1-1 

begin- 

symbols not containing end or else or ;) 

2.4. Identifers 
2.4.1. Syntax 
(identifier) : : = (letter) I( identifier)(letter) I( identifier)( digit) 

2.4.2. Examples 
4 
soup 
VI 7a 
a34kTMNs 
MA RIL YN 

-/ 2.4.3. Semantics 
Identifiers have no inherent meaning, but serve for the identification 
of simple variables, arrays, labels, switches, and procedures. They 
may be chosen freely. Identifiers also act as formai parameters of 
procedures, in which capacity they may represent any of the above 
entities, or a string. 
The same identifier cannot be used to denote two different 

quantities except when these quantities have disjoint scopes as 
defined by the declarations of the program (see Section 2.7 Quantities, 
kinds and scopes and Section 5 Declarations). This rule applies also 
to the formal parameters of procedures, whether representing a 
quantity or a string. 

2.5. Numbers 
2.5.1. Syntax 
(unsigned integer) : : = (digit)l(unsigned integer)(digit) 
(integer) : : = (unsigned integer)) +(unsigned integer) 

(decimal fraction) : : = .(unsigned integer) 
<exponent part> :: = io(integer) 
(decimal number) : : = (unsigned integer)((decimal fraction) 

1 (unsigned integer)( decimal fraction) 
(unsigned number) : : = (decimal number)l(exponent part) 

\(decimal number)( exponent part) 
(number) : : = (unsigned number) I + (unsigned number) 

1 -(unsigned integer) 

1 -(unsigned number) 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 1538:1984
https://standards.iteh.ai/catalog/standards/sist/d8d8c2b2-3c0e-4d32-8a4c-

d25998157337/iso-1538-1984



IS0 1538-1984 (E) 
2.5.2. Examples 

O - 200.084 - .O8310 - 02 

,5384 9.34io-t 10 10-4 
177 + 07.43108 - io7 

+ 0.7300 210-4 - t i o f 5  

2.5.3. Semantics 
Decimal numbers have their conventional meaning. The exponent 
part is a scale factor expressed as an integral power of 10. 

2.5.4. Types 
Integers are of integer type. All other numbers are of real type (see 
Section 5.1 Type declarations). 

2.6. Strings 
2.6.1. Syntax 
(proper string) : : = (any sequence of characters not containing 

(open string) : : = (proper string) 

(closed string) :: = ‘(open string)’ 
(string) : : = (closed string)l(closed string)(string) 

‘ or ’>I(empty> 

j(proper string)(closed string)(open string) 

2.6.2. Examples 
‘5k,, - ‘[[[‘A =/:’Tt’’ 
‘ . . This-is-a- ‘string’’ 

L. ‘This-isliall’ 
‘-oneustring’ 

2.6.3. Semantics 
In order to enable the language to handle sequences of characters 
the string quotes ‘ and ’ are introduced. 
The characters available within a string are a question of hardware 

representation, and further rules are not given in the reference 
language. However, it is recommended that visible characters, other 
than U and ”, should represent themselves, while invisible characters 
other than space should not occur within a string. To conform with 
ISO/TR 1672, a space may stand for itself, although in this 
document the character U is used to represent a space. 
To allow invisible, or other exceptional characters to be used, they 

are represented within either matching string quotes or a matched 
pair of the “ symbol. The rules within such an inner string are 
unspecified, so if such an escape mechanism is used a comment is 
necessary to explain the meaning of the escape sequence. 
A string of the form (closed string)(string) behaves as if it were 

the string formed by deleting the closing string quote of the closed 
string and the opening string quote of the following string (together 
with any layout characters between them). 

ings are used as actual parameters of procedures (see Sections 3’2- Function designators and 4.7 Procedure statements). 

2.7. Quantities, kinds and scopes 
The following kinds of quantities are distinguished : simple variables, 
arrays, labels, switches, and procedures. 
The scope of a quantity is the set of statements and expressions in 

which the declaration of the identifier associated with that quantity 
is valid. For labels see Section 4.1.3. 

2.8. Values and types 
A value is an ordered set of numbers (special case: a single number), 
an ordered set of logical vàlues (special case: a single logical value), 
or a label. 
Certain of the syntactic units are said to possess values. These 

values will in general change during the execution of the program. 
The values of expressions and their constituents are defined in 
Section 3. The value of an array identifier is the ordered set of values 
of the corresponding array of subscripted variables (see Section 
3.1.4. I ) .  
The various types (integer, real, Boolean) basically denote pro- 

perties of values. The types associated with syntactic units refer to 
the values of these units. 

3. Expressions 
In the language the primary constituents of the programs describing 
algorithmic processes are arithmetic, Boolean, and designational 

expressions. Constituents of these expressions, except for certain 
delimiters, are logical values, numbers, variables, function desig- 
nators, labels, switch designators, and elementary arithmetic, 
relational, logical, and sequential operators. Since the syntactic 
definition of both variables and function designators contains 
expressions, the definition of expressions, and their constituents, is 
necessarily recursive. 
(expression) : : = (arithmetic expression)l(Boolean expression) 

j(designationa1 expression) 

3.1. Variables 
3.1.1. Syntax 
(variable identifier) : : = (identifier) 
(simple variable) : : = (variable identifier) 
(subscript expression) : : = (arithmetic expression) 
(subscript list) : : = (subscript expression)j(subscript list), 

(array identifier) : : = (identifier) 
(subscripted variable) : : = (array identifier>[ (subscript list)] 
(variable) : : = (simple variable)l(subscripted variable) 

(subscript expression) 

3.1.2. Examples 
epsilon 
detA 
a17 

3.1.3.  Semantics 
A variable is a designation given to a single value. This value may be 
used in expressions for forming other values and may be changed at 
will by means of assignment statements (see Section 4.2). The type 
of the value of a particular variable is defined in the declaration for 
the variable itself (see Section 5.1 Type declarations) or for the 
corresponding array identifier (see Section 5.2 Array declarations). 

3.1.4. Subscripts 
3.1.4.1. Subscripted variables designate values which are com- 
ponents of multidimensional arrays (see Section 5.2 Array Uecla- 
rations). Each arithmetic expression of the subscript list occupies 
one subscript position of the subscripted variable and is called a 
subscript. The complete list of subscripts is enclosed in the subscript 
brackets [ 1. The array component referred to by a subscripted 
variable is specified by the actual numerical value of its subscripts 
(see Section 3.3 Arithmetic expressions). 

3.1.4.2. Each subscript position acts like a variable of integer type 
and the evaluation of the subscript is understood to be equivalent to 
an assignment to this fictitious variable (see Section 4.2.4). The value 
of the subscripted variable is defined only if the value of the subscript 
expression is within the subscript bounds of the array (see Section 
5.2 Array declarations). 

3.1.5.  Initial values of variables 
The value of a variable, not declared own, is undefined from entry 
into the block in which it is declared until an assignment is made to 
it. The value of a variable declared own is zero (if arithmetic) or false 
(if Boolean) on first entry to the block in which it is declared. On 
subsequent entries it has the same value as at the preceding exit from 
the block. 

3.2. Function designators 
3.2.1. Syntax 
(procedure identifier) :: = (identifier) 
(actual parameter) : : = (string)j(expression) 

1 (array identifier)]( switch identifier) 
1 (procedure identifier) 

(letter string) : : = (letter)l(letter string)(letter) 
(parameter delimiter) : : = ,I)(letter string):( 
(actual parameter list) : : = (actual parameter) 

I(actua1 parameter list) 
(parameter delimiter)(actual parameter) 

(actual parameter part) : : = (empty)l((actuai parameter list)) 
(function designator) : : = (procedure identifier) 

(actual parameter part) 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 1538:1984
https://standards.iteh.ai/catalog/standards/sist/d8d8c2b2-3c0e-4d32-8a4c-

d25998157337/iso-1538-1984



IS0 1538-1984 ( E )  
3.2.2. Examples 

sin(a - 6 )  
J ( v  + s, n) 
R 
S(s - S)Temperature:(T)Pressure:(P) 
Compile ( : = ’)Stack :( Q )  

3.2.3. Semantics 
Function designators define single numerical or logical values which 
result through the application of given sets of rules defined by a 
procedure deçlaration (see Section 5.4 Procedure declarations) to 
fixed sets of actual parameters. The rules governing specification of 
actual parameters are given in Section 4.7 Procedure statements. 
Not every procedure declaration defines rules for determining the 
value of a function designator. 

3.2.4. Standard functions and procedures 
Certain standard functions and procedures are declared in the 
environmental block with the foilowing procedure identifiers : 

abs, iabs, sign, entier, sqrt, sin, cos, arctan, In, exp, inchar, outchar, 
length, outstrirrg, outterminator, stop, fault, ininteger, outinteger, 
inreal, oirtreal, maxreal, minreal, maxint and epsilon. 

For details of these functions and procedures, see the specification 
of the environmental block given as Appendix 2. 

3.3. Arithmetic expressions 
3.3.1. Syntax 
(adding operator) : : = + I - 
(multiplying operator) : : = x I / \  
(primary) : : = (unsigned number)((variable) 

(factor) : : = (primary)l(factor)i(primary) 
(term) : : = (factor)((term)(muitipiying operator)(factor) 
(simple arithmetic expression) : : = (term)i(adding operator) 

(if clause) : : = if (Boolean expression) then 
(arithmetic expression) : : = (simple arithmetic expression) 

1 (function designator) J((arithmetic expression)) 

(term) I(simp1e arithmetic expression)(adding operator)(term) 

((if clause)(simple arithmetic expression) else 
(arithmetic expression) 

.- 3.3.2. Examples 
Primaries : 

sum 
w[i  + 2, 81 
cos ( y  + z x 3) 
(a - 3/y + vuj8) 

Factors : 
omega 
sumjcos(y + z x 3 )  
7.39410-8rw[i + 2, 8 ] t (a  - 3/y  + vuf8) 

Terms : 
U 
omega x sumfcos(y + z x 3)/7.39410-8 

7.39410- 8 

fw[ i  + 2, 8] f (a  - 3/y  + vuj8) 

Simp!e arithmetic expression : 
U - Yu + omega x sumjcos(y + z x 3)/7.39410-8 

i w [ i  + 2, 8] i (a  - 3/y  + vu.f.8) 

Arithmetic expressions : 

i fq > O then S + 3 x Q l A e l s e 2  x S + 3 x q 
i f a < O t h e n U +  V e l s e i f a x  b >  17thenU/V 

else if k # y then V/U else O 
a x sin(omega x t )  
0.571012 x a [ N  X ( N  - 1)/2,0] 
( A  x arctan(y) + Z)f (7  + Q )  
if q then n - 1 else n 
if a < O then A / B  else if b = O then B/A else z 

3.3.3. Semantics 
An arithmetic expression is a rule for computing a numerical value. 

6 

w x U - Q(S + Cii)i2 

In the case ofsimple arithmetic expressions this value is obtained by 
executing the indicated arithmetic operations on the actual numerical 
values of the primaries of the expression, as explained in detail in 
Section 3.3.4 below. The actual numerical value of a primary is 
obvious in the case of numbers. For variables it is the current value 
(assigned last in the dynamic senst), and for function designators it 
is the value arising from the computing rules defining the procedure 
(see Section 5.4.4 Values of function designators) when applied to 
the current values of the procedure parameters given in the expres- 
sion. Finally, for arithmetic expressions enclosed in parentheses the 
value must through a recursive analysis be expressed in terms of the 
values of primaries of the other three kinds. 

In the more general arithmetic expressions, which include if clauses, 
one out of several simple arithmetic expressions is selected on the 
basis of the actual values of the Boolean expressions (see Section 
3.4 Boolean expressions). This selection is made as follows: The 
Boolean expressions of the if clauses are evaluated one by one in 
sequence from left to right until one having the value true is found. 
The value of the arithmetic expression is then the value of the first 
arithmetic expression following this Boolean (the longest arithmetic 
expression found in this position is understood). If none of the 
Boolean expressions has the value true, then the value of the 
arithmetic expression is the value of the expression following the 
final else. 
The order of evaluation of primaries within an expression is not 

defined. If different orders of evaluation would produce differe- 
results, due to the action of side effects of function designators, th-, 
the program is undefined. 
In evaluating an arithmetic expression, it is understood that ail the 

primaries within that expression are evaluated, except those within 
any arithmetic expression that is governed by an if clause but not 
selected by it. In the special case where an exit is made from a 
function designator by means of a go to statement (see Section 
5.4.4), the evaluation of the expression is abandoned, when the go to 
statement is executed. 

3.3.4. Operators and types 
Apart from the Boolean expressions of if clauses, the constituents of 
simple arithmetic expressions must be of real or integer types (see 
Section 5.1 Type declarations). The meaning of the basic operators 
and the types of the expressions to which they lead are given by the 
following rules : 

3.3.4.1. The operators + , -, and x have the conventional meaning 
(addition, subtraction, and multiplication). The type of the expres- 
sion will be integer if both of the operands are of integer type, 
otherwise real. 

3.3.4.2. The operations (term)/(factor) and (term) t (factow 
both denote division. The operations are undefined if the factor has 
the value zero, but are otherwise to be understood as a multiplication 
of the term by the reciprocal of the factor with due regard to the 
rules of precedence (see Section 3.3.5) .  Thus for example 

a/b x 7 / ( p  - 4) x v/s 
means 

The operator / is defined for all four combinations of real and integer 
types and will yield results of real type in any case. The operator f 
is defined only for two operands both of integer type and will yield 
a result of integer type. If a and b are of integer type, then the value 
of a 
integer procedure &(a, b ) ;  value a, b ;  

.- 

((((a x (b- l ) )  x 7 )  x ( ( p  - x v> x (s- l )  . 

h is given by the function: 

integer a, b ;  
if b = O then 

else 
fauh(rdivubyuzero’, a) 

begin integer y, r ;  
q := O ;  r := iabs(a); 
for r := r - iabs(b) while r 2 O do q := q + 1 ;  
div := i f a  < O 
end div 

b > Othen -qelseq 

3.3.4.3. The operation (factor)i(primary) denotes exponentiation, 
where the factor is the base and the primary is the exponent. Thus 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 1538:1984
https://standards.iteh.ai/catalog/standards/sist/d8d8c2b2-3c0e-4d32-8a4c-

d25998157337/iso-1538-1984



IS0 1538-1984 (E) 
for example 

21nSk means (29k 
while 

27(ntm) means 3""'). 
If r is of real type and x of either real or integer type, then the value 
of x?r is given by the function: 
real procedure expr(x, r ) ;  value x ,  r ;  

real x ,  r ;  
if x > 0.0 then 

expr := exp(r x In(x)) 
else if x = 0.0 A r > 0.0 then 

expr := 0.0 
else 

fault ( rexpruundejïnedl, x )  
If i a n d j  are both of integer type, then the value of i i j  is given by 
the function: 
integer procedure expi(i, j ) ;  value i, j ;  

integer i, j ;  
i f j  < O V i = O A j = Othen 

else 
fault( rexpit-undefined', . j )  

begin 
integer k ,  resiclt; 
result := 1; 
for k : = 1 step I until j do 

result := result x i ;  
L~ expi  := result 

end expi 
If ti is of integer type and x of real type, then the value of x i n  is 
given by the function: 
real procedure expri(x, n) ;  value x ,  n ;  

real x ;  integer n ;  
if I I  = O ,\ x = 0.0 then 

else 
fuult ( rexpnci~ndefinedl, x) 

begin 
real result; integer i ;  
result : = 1 .O; 
for i : = iabs(n) step - 1 until 1 do 

expn : = if n < O then 1 .Olresult else result 
end expn 

result := result x x ;  

The call of the procedure fault denotes that the action of the program 
is undefined. It is understood that the finite deviations (see Section 
3.3.6) of using the exponentiation operator may be different from 
those of using the procedures expr and expn. 

3.3.4.4. Type of a conditional expression 
-'-e type of an arithmetic expression of the form 

if B then SAE else A E  
does not depend upon the value of B.  The expression is of real type 
if either SAE or A E  is real and is of integer type otherwise. 

,L 

3 . 3 . 5 .  PreceJence of operators 
The sequence of operations within one expression is generally from 
left to right, with the following additional rules: 

3 . 3 . 5 . 1 .  According to the syntax given in Section 3.3.1 the following 
rules of precedence hold : 

first: 
second: x j s  
third: + - 

3.3.5.2. The expression between a left parenthesis and the matching 
right parenthesis is evaluated by itself and this value is used in 
subsequent calculations. Consequently the desired order of execution 
of operations within an expression can always be arranged by 
appropriate positioning of parentheses. 

3.3.6. Arithr?ietics of real quantities 
Numbers and variables of real type must be interpreted in the sense 
of numerical analysis, i.e. as entities defined inherently with only a 
finite accuracy. Similarly, the possibility of the occurrence of a 
finite deviation from the mathematically defined result in any 
arithmetic expression is explicitly understood. No exact arithmetic 
will be specified, however, and it is indeed understood that different 

implementations may evaluate arithmetic expressions differently. 
The control of the possible consequences of such differences must be 
carried out by the methods of numerical analysis. This control must 
be considered a part of the process to be described, and will therefore 
be expressed in terms of the language itself. 

3.4. BooIean expressions 
3.4.1. Syntax 
(relational operator) : : = < I G \ = I> 1 > # 
(relation) : : = (simple arithmetic expression)(relational operator) 

(Boolean primary) : : = (logical value)((variable) 
(simple arithmetic expression) 

((function designator)((relation) 
I((Boo1ean expression)) 

(Boolean secondary) : : = (Boolean primary) Il (Boolean primary) 
(Boolean factor) : : = (Boolean secondary) 

(Boolean term) : : = (Boolean factor) 

(implication) : : = (Boolean term)l(implication) 3 (Boolean term) 
(simple Boolean) :: = (implication) 

(Boolean expression) : : = (simple Boolean) 

\(Boolean factor) A (Boolean secondary) 

I(Boolean term) i/ (Boolean factor) 

((simple Boolean) E (implication) 

/(if clause)(simple Boolean) else (Boolean expression) 

3.4.2. Examples 
x =  - 2  
Y >  v v z < q  
a + b >  - 5 A z - d > q i 2  
P A q V x Z y  
g = l a  A b  A l c  V d  V e =  If 
if k < 1 then s > w else h < c 
if if if a then b else c then 

d else f then g else h < k 

3.4.3. Semantics 
A Boolean expression is a rule for computing a logical value. The 
principles of evaluation are entirely analogous to those given for 
arithmetic expressions in Section 3.3.3. 

3.4.4. Types 
Variables and function designators entered as Boolean primaries 
must be declared Boolean (see Section 5.1 Type declarations and 
Section 5.4.4 Values of function designators). 

3.4.5. The operators 
The relational operators <, G ,  =, 3 ,  > and # have their con- 
ventional meaning (less than, less than or equal to, equal to, greater 
than or equal to, greater than, not equal to). Relations take on the 
value true whenever the corresponding relation is satisfied for the 
expressions involved, otherwise false. 
The meaning of the logical operators 1 (not), A (and), V (or), 

2 (implies), and = (equivalent), is given by the following function 
table: 

bl 
b2 
7 h l  
bl fi, b2 
bl v b2 
bl = b2 
bl b2 

false 
false 
true 
false 
false 
true 
true 

false true true 
true false true 
true false false 
false false true 
true true true 
true false true 
false false true 

3.4.6. Precedence of operators 
The sequence of operations within one expression is generally from 
left to right, with the following additional ruies: 

3.4.6.1. According to the syntax given in Section 3.4.1 the following 
rules of precedence hold: 

first: 
second: < G = 3 > # 
third: 1 
fourth: A 
fifth: v 
sixth: 2 

seventh: 

arithmetic expressions according to Section 3.3.5. 

7 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 1538:1984
https://standards.iteh.ai/catalog/standards/sist/d8d8c2b2-3c0e-4d32-8a4c-

d25998157337/iso-1538-1984



IS0 1538-1984 (E) 
3.4.6.2. The use of parentheses will be interpreted in the sense given 
in Section 3.3.5.2. 

3.5. Designational expressions 
3.5.1. Syntax 
(label) :: = (identifier) 
(switch identifier) :: = (identifier) 
(switch designator) : : = (switch identifier) [(subscript expression)] 
(simple designational expression) : : = (labe!) 

I (switch designator) I((designationa1 expression)) 
(deqignational expression) : : = (simple designational expression) 

I( if clause)(simple designational expression) 
else (designational expression} 

3.5.2. Examples 
LI7 
P9 
Choose [n - 11 
Town [if y < O then N else N + I ]  
if Ab < c then LI7 

else q[if w < O then 2 else n] 

3.5.3.  Semantics 
A designational expression is a rule for obtaining a label of a 
statement (see Section 4 Statements). Again the principle of the 
evaluation is entirely analogous to that of arithmetic expressions (see 
Section 3.3.3). In the general case thc Boolean expressions of the if 
clauses will select a simple designational expression. If this is a 
label the desired result is already found. A switch designator refers 
to the corresponding switch declaration (see Section 5.3 Switch 
declarations) and by the actual numerical value of its subscript 
expression selects one of the designational expressions listed in the 
switch declaration by counting these from left to right. Since the 
designational expression thus selected may again be a switch 
designator this evaluation is obviously a rxursive process. 

3.5.4. The subscript expression 
The evaluation of the subscript expression is analogous to that of 
subscripted variables (see Section 3.1.4.2). The value of a switch 
designator is defined only if the subscript expression assumes one of 
the positive values 1,  2, 3, . . ., n, where n is the number of entries in 
the switch iist. 

4. Statements 
The units of operation within the language are called statements. 
They will normally be executed consecutively as written. However, 
this sequence of operations may be broken by go to statements, 
which define their successor explicitly, shortened by conditional 
statements, which may cause certain statements to be skipped, and 
lengthened by for statements which cause certain statements to be 
repeated. 
In order to make it possible to define a specific dynamic succession, 

statements may be provided with labels. 
Since sequences of statements may be grouped together into com- 

pound statements and blocks the definition of statement must 
necessarily be recursive. Also since declarations, described in 
Section 5 ,  enter fundamentally into the syntactic structure, the 
syntactic definition of statements must suppose declarations to be 
already defined. 

4.1, Compound statements and blocks 
4.1.1. Syntax 
<unlabelled basic statement) : : = (assignment statement) 

1 (go to statement) I( dummy statement) 
I( procedure statement) 

(basic statement) : : = (unlabelled basic statement) 
((label) : (basic statement) 

(unconditional statement) : : = (basic statement) 
I(compound statement)!( block) 

(statement) : : = (unconditional statement)j(conditioilal statement) 
1 (for statement) 

(compound tail) : : = (statement)end 
\(statement) ; (compound tail) 

(block head) : : = begin (declaration) 
I(b1ock head); (declaration) 

(unlabelled compound) : : = begin (compound tail) 
(unlabelled block) :: = (block head); (compound tail) 
(compound statement) : : = (unlabelled compound) 

(block) : : = (unlabelled block)((label):(block) 
(program) :: = (block)l(compound statement) 
This syntax may be illustrated as follows: Denoting arbitrary 
statements, declarations, and labels, by the letters S, D, and L, 
respectively, the basic syntactic units take the forms: 

Compound statement : 

Block : 

It should be kept in mind that each of the statements S may again 
be a complete compound statement or block. 

](label) :(compound statement) 

L:L:  . . . begin S; S; . . . S; Send 

L:L: . . , begin D; D;  . . . D; S; S;  . . . S; Send 

4.1.2. Examples 
Basic statements: 

a : = p + q  
go to Naples 
START: CONTINC'E: W : = 7.993 

Compound statement : 
begin x := O ;  

for y := 1 step 1 until n do x := x + A [ y l ;  
if x > q then go to STOP 
else if x > w - 2 then go to S ;  

AW : St :  W := x + bob 
end 

Block : 
Q: begin integer i ,  k ;  real w ;  

for i : = 1 step 1 until m do 
for k : = i + 1 step 1 until m do 
begin w := A [ i ,  k ] ;  

A [ i ,  k ]  := A [ k ,  i l ;  
A [ k , i ]  := w 

end for i and k 
end block Q 

.\ 
-c 

4.1.3. Semantics 
Every block automatically introduces a new level of nomenclature. 
This is realised as follows: Any identifier occurring within the block 
may through a suitable declaration (see Section 5 Declarations) be 
specified to be local to the block in question. This means (a)  that the 
entity represented by this identifier inside the block has no existence 
outside it and (b) that any entity represented by this identifier outside 
the block is completely inaccessible inside the block. 
Identifiers (except those representing labels) occurring within .a 

block and not being declared to this block will be non-local tc- 
i.e. will represent the same entity inside the block and in the level 
immediately outside it. A label separated by a colon from a statement, 
i.e. labelling that statement, behaves as though declared in the head 
of the smallest embracing block, i.e. the smallest block whose 
brackets begin and end enclose that statement. 
A label is said to be implicitly declared in this block head, as 

distinct from the explicit declaration of all other local identifiers. 
In this context a procedure body, or the statement following a for 
clause, must be considered as if it were enclosed by begin and end 
and treated as a block, this block being nested within the fictitious 
block of Section 4.7.3.1. in the case of a procedure with parameters 
by value. A label that is not within any block of the program (nor 
within a procedure body, or the statement following a for clause) 
is implicitly declared in the head of the environmental block. 
Since a statement of a block may again itself be a block the concepts 

local and non-local to a block must be understood recursively. Thus 
an identifier which is non-local to a block A,  may or may not be 
non-local to the block B in which A is one statement. 

4.2. Assignment statements 
4.2.1. Syntax 
(destination) : : = (variable)j(procedure identifier> 
(left part) :: = (destination) : = 
(left part list) ::= (left part)/(ieft part list)(left part) 
(assignment statement) : : = (left part list)(arithmeiic expression) 

l(left part list)(Boolean expression) 

8 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 1538:1984
https://standards.iteh.ai/catalog/standards/sist/d8d8c2b2-3c0e-4d32-8a4c-

d25998157337/iso-1538-1984



IS0 1538-1984 (E) 
4.2.2. Examples 

s := p[O] := n := n + 1 + s 
n : = n + l  
A := BIC - v - q x S 
S[v ,  k + 21 := 3 - arctan(s x zeta) 
V : =  Q >  Y A Z  

4.2.3. Semantics 
Assignment statements serve for assigning the value of an expression 
to one or several destinations. Assignment to a procedure identifier 
may only occur within the body of a procedure defining the value of 
the function designator denoted by that identifier (see Section 5.4.4). 
If assignment is made to a subscripted variable, the values of all the 
subscripts must lie within the appropriate subscript bounds. Other- 
wise the action of the program becomes undefined. 
The process will in the general case be understood to take place in 

three steps as follows: 

4.2.3.1. Any subscript expressions occurring in the destinations are 
evaluated in sequence from left to right. 

4.2.3.2. The expression of the statement is evaluated. 

4.2.3.3. The value of the expression is assigned to all the destinations, 
with any subscript expressions having values as evaluated in step 
A ?.3.l. 
I- 
4.2.4. Types 
The type associated with all destinations of a left part list must be the 
same. If this type is Boolean, the expression must likewise be Boolean. 
If the type is real or integer, the expression must be arithmetic. i f  
the type of the arithmetic expression differs from that associated 
with the destinations, an appropriate transfer function is understood 
to be automatically invoked. For transfer from real to integer type 
the transfer function is understood to yield a result which is the 
largest integral quantity not exceeding E + 0.5 in the mathematical 
sense (i.e. without rounding error) where E is tQe value of the 
expression. It should be noted that E,  being of real type, is defined 
with only finite accuracy (see Section 3.3.6). The type associated with 
a procedure identifier is given by the declarator which appears as 
the first symbol of the corresponding procedure declaration (see 
Section 5.4.4). 

4.3. Go to statements 
4.3.1. Synlax 
\go to statement) : : = go to (designational expression> 

4.3.2. Examples 

i 
go to L8 
go to exit[n + I ]  
go to Town[if y < O then N else N + 1 1  
go to if Ab < c then LI7 

else 9[if w i O then 2 else n ]  

4.3.3. Semantics 
A go to statement interrupts the normal sequence of operations, by 
defining its successor explicitly by the value of a designational 
expression. Thus the next statement to be executed will be the one 
having this value as its label. 

4.3.4. Restriction 
Since labels are inherently.loca1, no go to statement can lead from 
outside into a block. A go to’statement may, however, lead from 
outside into a compound statement. 

4.3.5. Go to an undefined switch designator 
A go to statement is undefined if the designational expression is a 
switch designator whose value is undefined. 

4.4. Dummy statements 
4.4. I .  Syntax 
(dummy statement) : : = (empty) 

4.4.2, Examples 
L :  
begin statements; John: end 

4.4.3. Semantics 
A dummy statement executes no operation. It may serve to place a 
label. 

4.5. Conditional statements 
4.5.1. Syntax 
( i f  clause) : : = if (Boolean expression) then 
(unconditional statement) : : = (basic statement) 

(if statement) : : = \if clause)\unconditional statement) 
<conditional statement) : : = (if statement) 

I (compound statement) 1 (block) 

I(if statement) else \statement) 
I\if ciause)(for statement) 
/(label) :\conditional statement) 

4.5.2. Examples 
i f x  > O thenn := n + 1 
if v > U then V :  q : =  n + m else go to R 
i f s  < O P < Q then 

AA : begin if 9 < I> then a : = v/s 
else y := 2 )r a 

else if L’ > s then a : = v - q 
else if v > s - 1 then go to S 

end 

4.5.3. Seniantics 
Conditional statements cause certain statements to be executed or 
skipped depending on the running values of specified Boolean 
expressions. 

4.5.3.1. Jf statement 
An if statement is of the form 

if B then Su 
where B is a Boolean expression and Su is an unconditional statement. 
In  execution, B is evaluated; if the result is true, Su is executed; 
if the result is false, Sh is not executed. 
If Su contains a label, and a go to statement leads to the label, 

then B is not evaluated, and the computation continues with 
execution of the labelled statement. 

4.5.3.2. Conditional Statement 
Three forms of unlabelled conditional statement exist, namely: 

if B then Su 
if B then Sfor 
if B then Su else S 

where Su is an unconditional statement, Sfor is a for statement and 
S is a statement. 
The meaning of the first form is given in Section 4.5.3.1. 
The second form is equivalent to 

The third form is equivalent to 
if B then begin S’or end 

begin 
if B then begin Su; go to r e n d ;  
S ;  r: end 

(For the use of r see Section 2.1 Letters.) If S is conditional, and 
also of this form, a different label must be used instead of r in 
following the same rule. 

4.5.4. Go to into a conditional statement 
The effect of a go to statement leading into a conditional statement 
follows directly from the above explanation of the execution of a 
conditional statement. 

4.6. For statements 
4.6.1. Syntax 
(for list element) :. = (arithmetic expression) 

I (arithmet ic expression) step (arithmetic expression) 

I ‘arithmetic expression) while (Boolean expression) 
until (arithmetic expression) 

(for list) ::= (for list element)((for list), (for list element) 
(for clause) : : = for (variable identifier) : = (for list) do 
(for statement) : : = \for ciause)(statement) 

\\label) :(for statement) 

9 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 1538:1984
https://standards.iteh.ai/catalog/standards/sist/d8d8c2b2-3c0e-4d32-8a4c-

d25998157337/iso-1538-1984


	ž<�‘*‚ÃÑ¬PÂØ�LÜÅo#“-¾t@”�ïh‡ŸçÓ^7-−ó
å6¿-+�æèÚ>–Ã,ÆBY€Å¸1Úžm

