INTERNATIONAL STANDARD

ISO 14273

Second edition 2016-03-01

Resistance welding — Destructive testing of welds — Specimen dimensions and procedure for tensile shear testing resistance spot and embossed projection welds

Soudage par résistance — Essais destructifs des soudures —
Dimensions des éprouvettes et mode opératoire pour l'essai de
traction-cisaillement des soudures par résistance par points et par
bossages russite n'al

ISO 14273:2016 https://standards.iteh.ai/catalog/standards/sist/9a53dd97-7141-4f1d-8006-8df57beba8bb/iso-14273-2016

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 14273:2016 https://standards.iteh.ai/catalog/standards/sist/9a53dd97-7141-4f1d-8006-8df57beba8bb/iso-14273-2016

COPYRIGHT PROTECTED DOCUMENT

© ISO 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Con	tents Page
	ordiv
Intro	luctionv
1	Scope1
2	Normative references1
3	Terms and definitions1
4	Test pieces and specimens1
5	Test equipment and testing procedure3
6	Test report 5
Annex	A (informative) Specimen size — Saturated strength condition
Biblio	graphy8

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 14273:2016 https://standards.iteh.ai/catalog/standards/sist/9a53dd97-7141-4f1d-8006-8df57beba8bb/iso-14273-2016

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/IIW, International Institute of Welding, Commission III.

ISO 14273:2016

This second edition cancels and replaces the first edition (180 14273:2000); which has been technically revised.

8df57beba8bb/iso-14273-2016

Requests for official interpretations of any aspect of this International Standard should be directed to the ISO Central Secretariat, who will forward them to the IIW Secretariat for an official response.

Introduction

This edition of ISO 14273 no longer includes figures showing failure types and modes for tensile shear and cross tension testing in accordance with ISO 14329.

ISO 14273 has been revised to align it with ISO 17677-1.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 14273:2016 https://standards.iteh.ai/catalog/standards/sist/9a53dd97-7141-4f1d-8006-8df57beba8bb/iso-14273-2016

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 14273:2016

https://standards.iteh.ai/catalog/standards/sist/9a53dd97-7141-4f1d-8006-8df57beba8bb/iso-14273-2016

Resistance welding — Destructive testing of welds — Specimen dimensions and procedure for tensile shear testing resistance spot and embossed projection welds

1 Scope

This International Standard specifies specimen dimensions and a testing procedure for tensile shear testing of spot and embossed projection welds, in overlapping sheets, in any metallic material of thickness 0,5 mm to 10 mm, where the welds have a maximum diameter of $7\sqrt{t}$ (where t is the sheet thickness in mm).

The object of tensile shear testing is to determine the tensile shear force that the test specimen can sustain.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 7500-1, Metallic materials — Verification of static uniaxial testing machines — Part 1: Tension/compression testing machines — Verification and calibration of the force-measuring system

ISO 17677-1, Resistance welding — Vocabulary 127 Part 1: Spot, projection and seam welding

https://standards.iteh.ai/catalog/standards/sist/9a53dd97-7141-4f1d-8006-8df57beba8bb/iso-14273-2016

Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 17677-1 and the following apply.

3.1

tensile shear strength

TSS

maximum (tensile shear) force obtained from this test

3.2

tensile shear force

force applied on test specimen during tensile shear testing

3.3

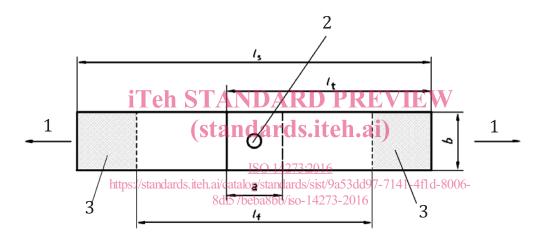
saturated strength condition

<resistance welding> condition where beyond a certain specimen width and overlap length, the weld strength does not increase

4 Test pieces and specimens

The configuration of the test specimen is shown in <u>Figure 1</u> and <u>Table 1</u>.

The test specimen dimensions given in <u>Table 1</u> are for testing in the saturated strength condition for weld diameters up to $5\sqrt{t}$.


For weld diameters between $5\sqrt{t}$ and $7\sqrt{t}$, tensile shear strength values can be underestimated when using the values given in Table 1 (see Annex A). When testing weld diameters over $5\sqrt{t}$ in the saturated

strength condition, the minimum coupon width shall be 7 to 10 times of the weld diameter (see Figure A.1).

Thickness	Overlap	Specimen width a	Specimen length	Free length be- tween clamps	Length of individual test pieces
t	а	b	$l_{ m S}$	$l_{ m f}$	l_{t}
mm	mm	mm	mm	mm	mm
$0,5 \le t \le 1,5$	35	45 (30)	175	95	105
1,5 < t ≤ 3	45	60 (30)	230	105	138
3 < t ≤ 5	60	90 (55)	260	120	160
5 < <i>t</i> ≤ 7,5	80	120 (80)	300	140	190
7,5 < <i>t</i> ≤ 10	100	150 (100)	320	160	210

Table 1 — Tensile shear test specimen dimensions for weld diameter $\leq 5\sqrt{t}$

^a Figures in parentheses will give approximately 10 % reduction in strength and these widths may be used only by agreement between the manufacturer and the purchaser.

Key

- 1 direction of test load
- 2 weld
- 3 clamping zone

Figure 1 — Tensile shear test specimen

The positional accuracy of the weld on the test specimen shall be ± 1 mm or less in every direction.

The test specimen can be produced, either by making multiple welds joining two test sheets as shown in Figure 2 a), and then cutting them, or by welding each single weld specimen separately as shown in Figure 2 b). In the case of different sheet thicknesses, the dimensions shall be based on the thinner sheet.

For equipment used to make multiple weld test pieces, each electrode shall weld one multiple weld test piece as shown in <u>Figure 2</u> a) or a single test specimen as shown in <u>Figure 2</u> b). Since shunting occurs during welding of a multiple weld test piece, the welding current used shall be higher than that for welding for a single weld test specimen.

For multiple weld test specimens, the first and last welds on the test piece shall be discarded as shown in Figure 2 a).

Test specimens for embossed projection welds shall only be produced as single weld test specimens as shown in Figure 2 b).

For multiple weld test pieces, the properties of the welds shall not be affected by the cutting process used to separate individual test specimens. To obtain a statistically significant average for spot and projection welding, several specimens shall be tested.

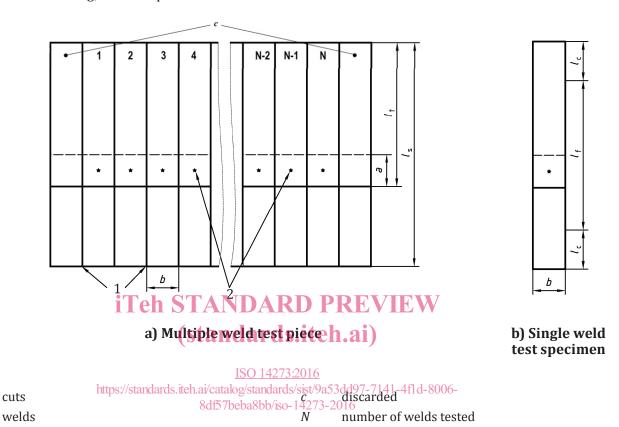


Figure 2 — Test specimen dimensions and sampling position for multiple and single welds

clamping length

l_s, l_t, l_f see Table 1

5 Test equipment and testing procedure

The specimen is clamped in a tensile testing machine, which shall satisfy the requirements of ISO 7500-1.

For sheet thickness >3 mm or where the ratio of the thicknesses of the two sheets is >1,4, shim plates shall be used for clamping the test specimen in the grips of the tensile testing machine. The shim plate shall be as thick as the sheet of the test specimen as shown in Figure 3.

Testing shall be carried out at room temperature.

Key

1

2

а

overlap

specimen/clamping width