INTERNATIONAL STANDARD

ISO 16610-40

First edition 2015-06-01

Corrected version 2015-10-01

Geometrical product specifications (GPS) — Filtration —

Part 40: Morphological profile filters: Basic concepts

iTeh STSpécification géométrique des produits (GPS) — Filtrage — Partie 40: Filtres de profil morphologiques: Concepts de base

<u>ISO 16610-40:2015</u> https://standards.iteh.ai/catalog/standards/sist/d4eab01c-023f-4de0-ac31-5fe1041c317a/iso-16610-40-2015

Reference number ISO 16610-40:2015(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 16610-40:2015</u> https://standards.iteh.ai/catalog/standards/sist/d4eab01c-023f-4de0-ac31-5fe1041c317a/iso-16610-40-2015

© ISO 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Contents

Foreword			iv	
			vi	
1	Scop)e		
2	Normative references			
3	Tern	ms and definitions		
4	Basic concepts			
	4.1	Minkowski sums		
		4.1.1 General		
		4.1.2 Minkowski addition	3	
		4.1.3 Minkowski subtraction	4	
	4.2	Morphological operations	4	
		4.2.1 General		
		4.2.2 Dilation		
		4.2.3 Erosion		
		4.2.4 Opening		
		4.2.5 Closing		
		4.2.6 Higher order morphological operations		
		4.2.7 Properties of morphological operations	7	
5	Morphological filters			
	5.1	General	7	
	5.2	Fill transform	7	
	5.3	Discrete morphological filters		
	5.4	Envelope filters		
	5.5	Sampling and reconstruction 10010-40/2015		
Annex A (informative) Concept diagram 317a/isou 16610-40-2015			-4051-	
Annex	B (in	formative) Relationship to the filtration matrix model		
Annex	c (in:	formative) Relationship to the GPS matrix model		
Bibliography				

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ASO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 213, Dimensional and geometrical product specifications and verification.

This first edition of ISO h16610=40 cancelsatandstreplacest/ISO//TSc-16610=40:2006 which has been technically revised. 5fe1041c317a/iso-16610-40-2015

This corrected version of ISO 16610-40:2015 incorporates the following corrections:

- 4.1.3 and 4.2.3: The font substitution errors ("!" instead of the sign \odot in the PDF) have been fixed.

ISO 16610 consists of the following parts, under the general title *Geometrical product specifications* (*GPS*) — *Filtration*:

- Part 1: Overview and basic concepts
- Part 20: Linear profile filters: Basic concepts
- Part 21: Linear profile filters: Gaussian filters
- Part 22: Linear profile filters: Spline filters
- Part 28: Profile filters: End effects
- Part 29: Linear profile filters: Spline wavelets
- Part 30: Robust profile filters: Basic concepts
- Part 31: Robust profile filters: Gaussian regression filters
- Part 32: Robust profile filters: Spline filters
- Part 40: Morphological profile filters: Basic concepts
- Part 41: Morphological profile filters: Disk and horizontal line-segment filters

- Part 49: Morphological profile filters: Scale space techniques
- Part 60: Linear areal filters: Basic concepts
- Part 61: Linear areal filters: Gaussian filters
- Part 71: Robust areal filters: Gaussian regression filters
- Part 85: Morphological areal filters: Segmentation

The following parts are planned:

- Part 26: Linear profile filters: Filtration on nominally orthogonal grid planar data sets
- Part 27: Linear profile filters: Filtration on nominally orthogonal grid cylindrical data sets
- Part 45: Morphological profile filters: Segmentation
- Part 62: Linear areal filters: Spline filters
- Part 69: Linear areal filters: Spline wavelets
- Part 70: Robust areal filters: Basic concepts
- Part 72: Robust areal filters: Spline filters
- Part 80: Morphological areal filters: Basic concepts
- Part 81: Morphological areal filters: Sphere and horizontal planar segment filters
- Part 89: Morphological areal filters: Scale space techniques

<u>ISO 16610-40:2015</u> https://standards.iteh.ai/catalog/standards/sist/d4eab01c-023f-4de0-ac31-5fe1041c317a/iso-16610-40-2015

Introduction

This part of ISO 16610 is a geometrical product specification (GPS) standard and is to be regarded as a general GPS standard (see ISO/TR 14638). It influences the chain links 3 and 5 of all chains of standards.

The ISO/GPS Masterplan given in ISO 14638 gives an overview of the ISO/GPS system of which this part of ISO 16610 is a part. The fundamental rules of ISO/GPS given in ISO 8015 apply to this part of ISO 16610 and the default decision rules given in ISO 14253-1 apply to specifications made in accordance with this part of ISO 16610, unless otherwise indicated.

For more detailed information about the relation of this part of ISO 16610 to the GPS matrix model, see <u>Annex C</u>.

This part of ISO 16610 develops the terminology and concepts for morphological operations and filters, including envelope filters.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 16610-40:2015</u> https://standards.iteh.ai/catalog/standards/sist/d4eab01c-023f-4de0-ac31-5fe1041c317a/iso-16610-40-2015

Geometrical product specifications (GPS) — Filtration —

Part 40: Morphological profile filters: Basic concepts

1 Scope

This part of ISO 16610 sets out the basic concepts and terminology for morphological operations and filters, including envelope filters.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 17450-1:2011, Geometrical product specifications (GPS) — Geometrical concepts — Part 1: Model for geometrical specification and verification

ISO 16610-1:2015, Geometrical product specifications (GPS) Filtration — Part 1: Overview and basic concepts (standards.iteh.ai)

3 Terms and definitions ISO 16610-40:2015

https://standards.iteh.ai/catalog/standards/sist/d4eab01c-023f-4de0-ac31-

For the purposes of this document, the terms and definitions given in ISO 16610-1, ISO 17450-1, and the following apply.

3.1

morphological operation

binary operation involving two geometrical objects as sets, resulting in another geometrical object

Note 1 to entry: Dilation and erosion are two primary morphological operations, and closing and opening are two secondary morphological operations.

Note 2 to entry: Geometrical objects are point sets, i.e. set of points.

3.2

morphological filter

morphological operation (3.1) that is both *monotonically increasing* (3.11) and *idempotent* (3.12)

3.3

envelope filter

closing (3.10) or opening (3.9) filter, whose output envelops the input profile or surface

Note 1 to entry: A closing filter generates the upper envelope; an opening filter generates the lower envelope.

3.4

Minkowski addition

vector sum of points in two given geometrical sets

3.5

Minkowski subtraction

binary operation defined using *Minkowski addition* (3.4) of two sets

Note 1 to entry: It is the complement of the Minkowski addition of the complement of the first set with the second set.

3.6

structuring element

(morphological filters) second geometrical object used in morphological operations

3.7

dilation

(morphological) morphological operation that expands one input set by another

Note 1 to entry: Dilation is not a morphological filter because it is not idempotent.

3.8

erosion

(morphological) morphological operation that shrinks one input set by another

Note 1 to entry: Erosion is not a morphological filter because it is not idempotent.

3.9

opening

(morphological filters) morphological operation obtained by applying the *erosion* (3.8) followed by the dilation (3.7)**11eh SIANDARD** PREVIE

Note 1 to entry: An opening is both a morphological filter and one of the two basic building blocks for other morphological filters.

ISO 16610-40:2015

https://standards.iteh.ai/catalog/standards/sist/d4eab01c-023f-4de0-ac31-

closing (morphological filters) morphological operation obtained by applying the *dilation* (3.7) followed by the erosion (3.8)

Note 1 to entry: A closing is both a morphological filter and one of the two basic building blocks for other morphological filters.

3.11

3.10

monotonically increasing

(morphological filters) property of an operation that preserves the set containment condition on its operands

3.12

idempotent

property of an operation such that applying the operation more than once does not change the outcome

3.13

extensive

(morphological filters) property of an operation that the output of the operation contains the input

3.14

anti-extensive

(morphological filters) property of an operation that the output of an operation is contained in the input

3.15

fill transform

operation that converts a profile into a two-dimensional object and a surface into a threedimensional object

3.16

umbra transform

fill transform (3.15) applicable to open profiles and open surfaces

3.17

rigid body transformation

operation on a geometric object involving translations and rotations that do not change the distance between any two points in the object

3.18

rigid motion invariant

property of an operation that does not change under *rigid body transformation* (3.17)

4 Basic concepts

4.1 Minkowski sums

4.1.1 General

Minkowski sums refer to Minkowski additions and Minkowski subtractions involving sets of geometric objects in any dimension. Geometric objects are represented by sets of points.

NOTE A concept diagram for the concepts for morphological filters is given in <u>Annex A</u>. The relationship to the filtration matrix model is given in <u>Annex B</u> **DARD PREVIEW**

4.1.2 Minkowski addition (standards.iteh.ai)

Minkowski addition of two sets, A and B, is denoted $A \bigoplus B$, and is defined as the vector addition

 $A \oplus B = \{a + b : a \notin A \ b \oplus B\}$ ards.iteh.ai/catalog/standards/sist/d4eab01c-023f-4de0-ac31-5fe1041c317a/iso-16610-40-2015

Figure 1 illustrates the Minkowski addition of two sets, *A* and *B*, in two dimensions.

NOTE 1 Sets *A* and *B* can be of any dimensionality. They can also be of mixed dimensionality, e.g. *A* can be three-dimensional and *B* can be two-dimensional. Sets in one, two, and three dimensions are of interest.

NOTE 2 Minkowski addition can be viewed as the sweep of one set over the other set. This can be seen in the construction of $A \oplus B$ in Figure 1. Minkowski addition leads to an enlargement of the sets that are added.

NOTE 3 Minkowski addition is commutative, i.e. $A \oplus B = B \oplus A$, as can be verified from the definition of Minkowski addition.

Figure 1 — Minkowski addition of two sets

(1)

4.1.3 Minkowski subtraction

Minkowski subtraction of set *B* from set *A* is denoted $A \odot B$ and is defined as

$$A \odot B = \overline{\overline{A} \oplus B}$$
(2)

where the bar denotes complementation. Figure 2 illustrates the Minkowski subtraction of set B from set A in two dimensions.

NOTE 1 As in Minkowski addition, sets A and B can be of any dimensionality. They can also be of mixed dimensionality, e.g. A can be three-dimensional and B can be two-dimensional. Sets in one, two, and three dimensions are of interest.

NOTE 2 Minkowski subtraction leads to a reduction of the set *A*, as shown in the construction of $A \ominus B$ in Figure 2.

NOTE 3 Minkowski subtraction is not commutative, i.e. $A \ominus B$ is not the same as $B \ominus A$.

Figure 2 — Minkowski subtraction of two sets

4.2 Morphological operations

4.2.1 General

NOTE

The following morphological operations involving sets *A* and *B* are defined using Minkowski sums. It is customary to refer to the set *A* as the input set and the set *B* as the structuring element. A symmetric version of the structuring element *B* is obtained by a reflection of *B* through the origin of *B* and is denoted

$$\stackrel{\vee}{B} = \{-b : b \in B\} \tag{3}$$

The structuring element *B* shown in Figures 1 and 2 is already symmetrical about its origin; hence

B = B in these cases. It is possible to define two primary morphological operations, called dilation and erosion, and two secondary morphological operations, called opening and closing.

4.2.2 Dilation

Dilation of *A* by *B* is defined as

$$D(A,B) = A \oplus \overset{\vee}{B}$$

(4)

NOTE 1 Dilation expands the input set *A* by the structuring element *B*.

NOTE 2 An example of dilation is shown in Figure 1. Due to the symmetry of *B* in this example, D(A,B) is the same as $A \oplus B$. An example where *B* is not symmetric is shown in Figure 3.

NOTE The reference point of the structuring element is the lower left corner.

Figure 3 — Dilation of input set A by a non-symmetric structuring element B

4.2.3 Erosion

Erosion of A by B is defined as STANDARD PREVIEW

 $E(A,B) = A \odot \overset{\vee}{B}$

NOTE 1 Erosion shrinks the input set *A* by the structuring element *B*. https://standards.teb.ai/catalog/standards/sist/d4eab01c-023f-4de0-ac31-

NOTE 2 An example of erosion is shown in Figure 2. Oue to the symmetry of *B* in this example, E(A,B) is the same as $A \ominus B$. An example where *B* is not symmetric is shown in Figure 4.

(standards.iteh.ai)

NOTE The reference point of the structuring element is the lower left corner.

Figure 4 — Erosion of input set A by a non-symmetric structuring element B

4.2.4 Opening

Opening of *A* by *B* is defined as

$$O(A,B) = D\left[E(A,B), \overset{\vee}{B}\right]$$
(6)

(5)