This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

INTERNATIONAL

Designation: B338-06a Designation: B 338 - 08

Standard Specification for Seamless and Welded Titanium and Titanium Alloy Tubes for Condensers and Heat Exchangers¹

This standard is issued under the fixed designation B 338; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope

1.1 This specification² covers the requirements for 28 grades of titanium and titanium alloy tubing intended for surface condensers, evaporators, and heat exchangers, as follows:

- 1.1.1 Grade 1—Unalloyed titanium,
- 1.1.2 Grade 2-Unalloyed titanium,
- 1.1.2.1 Grade 2H-Unalloyed titanium (Grade 2 with 58 ksi minimum UTS),
- 1.1.3 Grade 3-Unalloyed titanium,
- 1.1.4 Grade 7-Unalloyed titanium plus 0.12 to 0.25 % palladium,
- 1.1.4.1 Grade 7H-Unalloyed titanium plus 0.12 to 0.25 % palladium (Grade 7 with 58 ksi minimum UTS),
- 1.1.5 Grade 9—Titanium alloy (3 % aluminum, 2.5 % vanadium),
- 1.1.6 Grade 11-Unalloyed titanium plus 0.12 to 0.25 % palladium,
- 1.1.7 Grade 12-Titanium alloy (0.3 % molybdenum, 0.8 % nickel),
- 1.1.8 Grade 13—Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.9 Grade 14—Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.10 Grade 15-Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.11 Grade 16—Unalloyed titanium plus 0.04 to 0.08 % palladium,
- 1.1.11.1 Grade 16H—Unalloyed titanium plus 0.04 to 0.08 % palladium (Grade 16 with 58 ksi minimum UTS),
- 1.1.12 Grade 17-Unalloyed titanium plus 0.04 to 0.08 % palladium,
- 1.1.13 Grade 18-Titanium alloy (3 % aluminum, 2.5 % vanadium) plus 0.04 to 0.08 % palladium,
- 1.1.14 Grade 26-Unalloyed titanium plus 0.08 to 0.14 % ruthenium,
- 1.1.14.1 Grade 26H-Unalloyed titanium plus 0.08 to 0.14 % ruthenium (Grade 26 with 58 ksi minimum UTS),
- 1.1.15 Grade 27-Unalloyed titanium plus 0.08 to 0.14 % ruthenium,
- 1.1.16 Grade 28-Titanium alloy (3 % aluminum, 2.5 % vanadium) plus 0.08 to 0.14 % ruthenium, astm-b338-08
- 1.1.17 Grade 30—Titanium alloy (0.3 % cobalt, 0.05 % palladium),
- 1.1.18 Grade 31—Titanium alloy (0.3 % cobalt, 0.05 % palladium),
- 1.1.19 Grade 33—Titanium alloy (0.4 % nickel, 0.015 % palladium, 0.025 % ruthenium, 0.15 % chromium),
- 1.1.20 Grade 34—Titanium alloy (0.4 % nickel, 0.015 % palladium, 0.025 % ruthenium, 0.15 % chromium),
- 1.1.21 Grade 35-Titanium alloy (4.5 % aluminum, 2 % molybdenum, 1.6 % vanadium, 0.5 % iron, 0.3 % silicon),
- 1.1.22 Grade 36—Titanium alloy (45 % niobium),
- 1.1.23 Grade 37-Titanium alloy (1.5 % aluminum), and
- 1.1.24 Grade 38-Titanium alloy (4 % aluminum, 2.5 % vanadium, 1.5 % iron).

Note 1—H grade material is identical to the corresponding numeric grade (that is, Grade 2H = Grade 2) except for the higher guaranteed minimum UTS, and may always be certified as meeting the requirements of its corresponding numeric grade. Grades 2H, 7H, 16H, and 26H are intended primarily for pressure vessel use.

The H grades were added in response to a user association request based on its study of over 5200 commercial Grade 2, 7, 16, and 26 test reports, where over 99 % met the 58 ksi minimum UTS.

- 1.2 Tubing covered by this specification shall be heat treated by at least a stress relief as defined in 5.3.
- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical

¹ This specification is under the jurisdiction of ASTM Committee B10 on Reactive and Refractory Metals and Alloys and is the direct responsibility of Subcommittee B10.01 on Titanium.

Current edition approved June 1, 2006. May 15, 2008. Published June 2006.2008. Originally approved in 1958. Last previous edition approved in 2006 as B 338 – 06a. ² For ASME Boiler and Pressure Vessel Code applications, see related Specification SB-338 in Section II of that Code.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

🖽 B 338 – 08

conversions to SI units that are provided for information only and are not considered standard.

2. Referenced Documents

2.1 ASTM Standards: ³

A 370 Test Methods and Definitions for Mechanical Testing of Steel Products

E 8 Test Methods for Tension Testing of Metallic Materials

E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E 120 Test Methods for Chemical Analysis of Titanium and Titanium Alloys

E 1409 Test Method for Determination of Oxygen and Nitrogen in Titanium and Titanium Alloys by the Inert Gas Fusion Technique

E 1447 Test Method for Determination of Hydrogen in Titanium and Titanium Alloys by the Inert Gas Fusion Thermal Conductivity/Infrared Detection Method

3. Terminology

3.1 Lot Definitions:

3.1.1 castings, n-a lot shall consist of all castings produced from the same pour.

3.1.2 *ingot*, *n*—no definition required.

3.1.3 rounds, flats, tubes, and wrought powder metallurgical products (single definition, common to nuclear and non-nuclear standards), n—a lot shall consist of a material of the same size, shape, condition, and finish produced from the same ingot or powder blend by the same reduction schedule and the same heat treatment parameters. Unless otherwise agreed between manufacturer and purchaser, a lot shall be limited to the product of an 8 h period for final continuous anneal, or to a single furnace load for final batch anneal.

3.1.4 sponge, n-a lot shall consist of a single blend produced at one time.

3.1.5 weld fittings, n-definition is to be mutually agreed upon between manufacturer and the purchaser.

TABLE 1Chemical Requirements^A

F I	Composition, % Ten an										
Element	Grade 1	Grade 2	Grade 2H	Grade 3	Grade 7	Grade 7H	Grade 9	Grade 11	Grade 12	Grade 13	
Nitrogen, max	0.03	0.03	0.03	0.05	0.03	0.03	0.03	0.03	0.03	0.03	
Carbon, max	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	
Hydrogen, ^{B,C} max	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	
Iron, max	0.20	0.30	0.30	0.30	0.30	0.30	0.25	0.20	0.30	0.20	
Oxygen, max	0.18	0.25	0.25	0.35 \ S T \	0.25 38-0	8 0.25	0.15	0.18	0.25	0.10	
Aluminum Vanadium 105://stat	n da rds.ite	h. a i/catalo	o/ s tandaro	1s 7 sist/041	$0^{\overline{2}}$ e1c-cd	0 a -45ef-8	2.5 3.5 20 30	b3 f ac79de	/astm-b33	8	
Tin											
Ruthenium										0.04-0.06	
Palladium					0.12 0.25	0.12-0.25		0.12 0.25			
Cobalt											
Molybdenum									0.2-0.4		
Chromium											
Nickel									0.6-0.9	0.4-0.6	
Niobium											
Zirconium											
Silicon											
Residuals, ^{D,E,F} max	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
each											
Residuals, D,E,F	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	
maxtotal											
Titanium ^G	balance	balance	balance	balance	balance	balance	balance	balance	balance	balance	
F lowert					Compos	sition, %					
Element	Grade 14	Grade 15	Grade 16	Grade 16H	Grade 17	Grade 18	Grade 26	Grade 26H	Grade 27		
Nitrogen, max	0.03	0.05	0.03).03	0.03	0.03	0.03	0.03	0.03		
Garbon, max	0.08	0.08	0.08).08	0.08	0.08	80.0	0.08	0.08		
Hydrogen, ^{B,C} max	0.015	0.015	0.015 ().015	0.015	0.015	0.015	0.015	0.015		
Iron, max	0.30	0.30	0.30 ().30	0.20	0.25	0.30	0.30	0.20		
Oxygen, max	0.15	0.25	0.25).25	0.18	0.15	0.25	0.25	0.18		
Aluminum						2.5-3.5					
Vanadium						2.0-3.0					

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

🥼 В 338 – 08

	Composition, %									
Element										
	Grade 14	Grade 15	Grade 16	Grade 16H	Grade 17	Grade 18	Grade 26	Grade 26H	Grade 27	
Tin										
Ruthenium	0.04-0.06	0.04-0.06					0.08-0.14	0.08-0.14	0.08-0.14	
Palladium			0.04-0.08	0.04-0.08	0.04-0.08	0.04-0.08				
Cobalt										
Molybdenum										
Chromium										
Nickel	0.4-0.6	0.4-0.6								
Niobium										
Zirconium										
Silicon										
Residuals, ^{D,E,F} max	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
each										
Residuals, ^{D.E.F} max	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	
total										
Titanium^G	balance	balance	balance	balance	balance	balance	balance	balance	balance	

	-								
Element									
	Grade 28	Grade 30	Grade 31	Grade 33	Grade 34	Grade 35	Grade 36	Grade 37	Grade 38
Nitrogen, max	0.03	0.03	0.05	0.03	0.05	0.05	0.03	0.03	0.03
Carbon, max	0.08	0.08	0.08	0.08	0.08	0.08	0.04	0.08	0.08
Hydrogen, ^{B,C} max	0.015	0.015	0.015	0.015	0.015	0.015	0.0035	0.015	0.015
Iron, max or range	0.25	0.30	0.30	0.30	0.30	0.20-0.80	0.03	0.30	1.2–1.8
Oxygen, max or	0.15	0.25	0.35	0.25	0.35	0.25	0.16	0.25	0.20-0.30
range									
Aluminum	2.5 3.5					4.0-5.0		1.0-2.0	3.5 4.5
Vanadium	2.0-3.0					1.1-2.1			2.0-3.0
Tin									
Ruthenium	0.08-0.14			0.02-0.04	0.02-0.04				
Palladium		0.04-0.08	0.04-0.08	0.01-0.02	0.01-0.02				
Cobalt		0.20-0.80	0.20 0.80						
Molybdenum		# h 44-			the seal	1.5-2.5			
Chromium				0.1-0.2	0.1-0.2	S.ILC			
Nickel		71	<u> </u>	0.35-0.55	0.35-0.55				
Niobium					—	 •	42.0-47.0		
Zirconium			-0C11	men	E Pr	ezviev	7.		
Silicon			-		<u> </u>	0.20-0.40			
Residuals, ^{D, E, F} max	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
each									
Residuals, ^{D,E,F} max	0.4	0.4	0.4	0.4 STV	0.4 8_08	0.4	0.4	0.4	0.4
total									
Titanium ^G standa	balance	balance	balance	Remainder	Remainder	Remainder	Remainder	Remainder	balance 38-08

⁴Analysis shall be completed for all elements listed in this table for each grade. The analysis results for the elements not quantified in the table need not be reported unless the concentration level is greater than 0.1% each or 0.4% total.

^BLower hydrogen may be obtained by negotiation with the manufacturer.

^CFinal product analysis.

^D Need not be reported.

^C A residual is an element present in a metal or an alloy in small quantities and is inherent to the manufacturing process but not added intentionally. In titanium these elements include aluminum, vanadium, tin, chromium, molybdenum, niobium, zirconium, hafnium, bismuth, ruthenium, palladium, yttrium, copper, silicon, cobalt, tantalum, nickel, boron, manganese, and tungsten.

The purchaser may, in his written purchase order, request analysis for specific residual elements not listed in this specification.

4. Ordering Information

4.1 Orders for material to this specification shall include the following information, as required:

4.1.1 Quantity,

4.1.2 Grade number (Section 1),

4.1.3 Diameter and wall thickness (Section 12) (Note 2),

4.1.4 Length (Section 12),

4.1.5 Method of manufacture and finish (Sections 5 and 13),

4.1.6 Restrictive chemistry, if desired (Section 6 and

Table 1),

4.1.7 Product analysis, if desired (Section 7 and Table 2),

4.1.8 Special mechanical properties, if desired (Section 8 and Table 3),

4.1.9 Nondestructive tests (Section 11),

4.1.10 Packaging (Section 23),

4.1.11 Inspection (Section 17), and

4.1.12 Certification (Section 21).

🕼 В 338 – 08

TABLE 1 Chemical Requirements^A

E !!					Compo	sition, %				
<u>⊢lement</u>	Grade 1	Grade 2	Grade 2H	Grade 3	Grade 7	Grade 7H	Grade 9	Grade 11	Grade 12	Grade 13
Nitrogen, max Carbon, max Hydrogen, ^{R,C} max Iron, max Oxygen, max Aluminum	0.03 0.08 0.015 0.20 0.18	0.03 0.08 0.015 0.30 0.25	0.03 0.08 0.015 0.30 0.25 	0.05 0.08 0.015 0.30 0.35	0.03 0.08 0.015 0.30 0.25 	0.03 0.08 0.015 0.30 0.25 	0.03 0.08 0.015 0.25 0.15 2.5–3.5	0.03 0.08 0.015 0.20 0.18	0.03 0.08 0.015 0.30 0.25	0.03 0.08 0.015 0.20 0.10
Vanadium Tin Ruthenium				 	 		<u>2.0–3.0</u> 	 		 0.04–0.06
Cobalt Molybdenum Chromium	 	 	 		<u>0.12–0.25</u> 	<u>0.12–0.25</u> 		<u>0.12–0.25</u> 	 0.2–0.4	
Nickel Niobium Zirconium	 		 						0.6–0.9 	0.4–0.6
<u>Residuals</u> , ^{D,E,F} max each	<u></u> <u>0.1</u>	<u></u> <u>0.1</u>	<u></u> <u>0.1</u>	<u></u> 0.1	<u></u> <u>0.1</u>	<u></u> <u>0.1</u>	<u></u> <u>0.1</u>	<u></u> <u>0.1</u>	<u></u> <u>0.1</u>	<u></u> <u>0.1</u>
Residuals, ^{D,E,F} max_total Titanium ^G	<u>0.4</u> balance	0.4 balance	<u>0.4</u> balance	0.4 balance	<u>0.4</u> balance	<u>0.4</u> balance	<u>0.4</u> balance	0.4 balance	<u>0.4</u> balance	<u>0.4</u> balance
manian	bulanoo	balanoo	balanoo		Compos	sition, %	balarioo	bulanoo		balanoo
Element	Grade 14	Grade 15	Grade 16	Grade 16H	Grade 17	Grade 18	Grade 26	Grade 26H	Grade 27	
Nitrogen, max Carbon, max Hydrogen, ^{B,C} max Iron, max Oxygen, max Aluminum Vanadium	0.03 0.08 0.015 0.30 0.15 	$\begin{array}{c} 0.05 \\ \hline 0.08 \\ \hline 0.015 \\ \hline 0.30 \\ \hline 0.25 \\ \hline \cdots \\ \hline \cdots \\ \hline \end{array}$	$\begin{array}{c} 0.03 \\ 0.08 \\ 0.015 \\ 0.30 \\ 0.25 \\ \cdots \\ \cdots \\ \cdots \end{array}$	0.03 0.08 0.015 0.30 0.25	0.03 0.08 0.015 0.20 0.18	$\begin{array}{c} 0.03 \\ \hline 0.08 \\ \hline 0.015 \\ \hline 0.25 \\ \hline 0.15 \\ \hline 2.5 - 3.5 \\ \hline 2.0 - 3.0 \end{array}$	0.03 0.08 0.015 0.30 0.25 	0.03 0.08 0.015 0.30 0.25 	0.03 0.08 0.015 0.20 0.18 	
<u>Iin</u> Ruthenium Palladium Cobalt	<u></u> 0.04–0.06 	<u></u> 0.04–0.06 	<u></u> <u>0.04–0.08</u>	<u></u> <u>0.04–0.08</u>	 0.04–0.08	<u></u> 0.04–0.08	 0.08–0.14 	<u></u> 0.08–0.14 	<u></u> 0.08–0.14 	
Molybdenum Chromium Nickel	 <u>0.4–0.6</u>	 <u>0.4–0.6</u>	≕ ≕ ≕	<u> </u>	<u>≖</u> 4 <u>⊒B338-0</u> 072e1c-cd) <u>8.</u> (73-45ef-		 153 fac79de		
Zirconium Silicon Residuals, ^{D,E,F} max	 <u>0.1</u>	 <u>0.1</u>	 <u>0.1</u>	 <u>0.1</u>	 <u>0.1</u>	 <u>0.1</u>	 <u></u> <u>0.1</u>	 <u>0.1</u>	 <u>0.1</u>	
each Residuals, ^{D,E,F} max	<u>0.4</u>	<u>0.4</u>	<u>0.4</u>	0.4	<u>0.4</u>	<u>0.4</u>	<u>0.4</u>	<u>0.4</u>	<u>0.4</u>	
Titanium ^G	balance	balance	balance	balance	balance Compo	balance	balance	balance	balance	
Element	Grade 28	Grade 30	Grade 31	Grade 33	Grade 34	Grade 35	Grade 36	Grade 37	Grade 38	
Nitrogen, max Carbon, max Hydrogen, ^{B,C} max Iron, max or range Oxygen, max or range	0.03 0.08 0.015 0.25 0.15	0.03 0.08 0.015 0.30 0.25	0.05 0.08 0.015 0.30 0.35	0.03 0.08 0.015 0.30 0.25	0.05 0.08 0.015 0.30 0.35	0.05 0.08 0.015 0.20-0.80 0.25	0.03 0.04 0.0035 0.03 0.16	0.03 0.08 0.015 0.30 0.25	0.03 0.08 0.015 1.2–1.8 0.20–0.30	
Aluminum Vanadium Tin Ruthenium	<u>2.5–3.5</u> <u>2.0–3.0</u> 0.08–0.14			 0.02-0.04	 0.02-0.04	<u>4.0-5.0</u> <u>1.1-2.1</u> 		<u>1.0-2.0</u> 	<u>3.5–4.5</u> <u>2.0–3.0</u> 	
Palladium Cobalt Molybdenum Chromium Nickel Niobium		0.04–0.08 0.20–0.80 	0.04-0.08 0.20-0.80 	0.01-0.02 0.1-0.2 0.35-0.55	0.01-0.02 0.1-0.2 0.35-0.55 	 <u>1.5-2.5</u> 	 42.0-47.0			
Zirconium Silicon Residuals, ^{D,E,F} max each	 <u>0.1</u>	 <u>0.1</u>	 0.1	 <u>0.1</u>	 <u>0.1</u>	 <u>0.20-0.40</u> <u>0.1</u>	<u></u> <u></u> <u>0.1</u>	 <u>0.1</u>	 <u>0.1</u>	

🕼 В 338 – 08

Element	<u>Composition, %</u>								
	Grade 28	Grade 30	Grade 31	Grade 33	Grade 34	Grade 35	Grade 36	Grade 37	Grade 38
Residuals, ^{D,E,F} max total	0.4	<u>0.4</u>	<u>0.4</u>	<u>0.4</u>	0.4	<u>0.4</u>	<u>0.4</u>	<u>0.4</u>	<u>0.4</u>
Titanium ^G	balance	balance	balance	Remainder	Remainder	Remainder	Remainder	Remainder	balance

^A Analysis shall be completed for all elements listed in this table for each grade. The analysis results for the elements not quantified in the table need not be reported unless the concentration level is greater than 0.1 % each or 0.4 % total.

^B Lower hydrogen may be obtained by negotiation with the manufacturer.

^C Final product analysis.

^D Need not be reported.

^E A residual is an element present in a metal or an alloy in small quantities and is inherent to the manufacturing process but not added intentionally. In titanium these elements include aluminum, vanadium, tin, chromium, molybdenum, niobium, zirconium, hafnium, bismuth, ruthenium, palladium, yttrium, copper, silicon, cobalt, tantalum, nickel, boron, manganese, and tungsten.

The purchaser may, in his written purchase order, request analysis for specific residual elements not listed in this specification.

^G The percentage of titanium is determined by difference.

		%
Element	Maximum or Specified Range	Permissible Variation in Product Analysis
Aluminum	0.5 to 2.5	±0.20
Aluminum	2.5 to 3.5	±0.40
Carbon	0.10	+0.02
Chromium	0.1 to 0.2	±0.02
Cobalt	0.2 to 0.8	± 0.05
Hydrogen	0.015	+0.002
Iron	0.80	+0.15
Iron	1.2 to 1.8	±0.20
Molybdenum	0.2 to 0.4	±0.03
Molybdenum	-1.5 to 4.5	±0.20
Nickel	0.3 to 0.9	±0.05
Niobium	>30	±0.50
Nitrogen	0.05	+0.02
Oxygen	0.30 and a	+0.03
Oxygen	0.31 to 0.40	±0.04
Palladium	- 0.01 to 0.02	±0.002
Palladium	0.04 to 0.25	±0.02
Ruthenium	0.02 to 0.04	±0.005
Ruthenium	0.04 to 0.06	±0.005
Ruthenium	0.08 to 0.14	±0.01
Silicon	0.06 to 0.40	±0.02
and sitten al Vanadium Residuals ⁴ (each)	$s_{0.1}^{2.0 \text{ to } 3.0} 102 e1 c - cd0$	150.15 ef-8dad-9e6b3fac79de/astm-b338-0

TABLE 2 Permissible Variations in Product Analysis

^A A residual is an element present in a metal or an alloy in small quantities inherent to the manufacturing process but not added intentionally. In titanium these elements include aluminum, vanadium, tin, iron, chromium, molybdenum, niobium, zirconium, hafnium, bismuth, ruthenium, palladium, yttrium, copper, silicon, cobalt, tantalum, nickel, boron, manganese, and tungsten.

Note 2—Tube is available to specified outside diameter and wall thickness (state minimum or average wall).

5. Materials and Manufacture

5.1 Seamless tube shall be made from hollow billet by any cold reducing or cold drawing process that will yield a product meeting the requirements of this specification. Seamless tube is produced with a continuous periphery in all stages of manufacturing operations.

5.2 Welded tube shall be made from flat-rolled product by an automatic arc-welding process or other method of welding that will yield a product meeting the requirements of this specification. Use of a filler material is not permitted.

5.3 Welded/cold worked tube (WCS) shall be made from welded tube manufactured as specified in 5.2. The welded tube shall be sufficiently cold worked to final size in order to transform the cast weld microstructure into a typical equiaxed microstructure in the weld upon subsequent heat treatment. The product shall meet the requirements for seamless tube of this specification.

5.4 The tube shall be furnished in the annealed condition with the exception of Grades 9, 18 and 28, which, at the option of the purchaser, can be furnished in either the annealed or the cold worked and stress relieved condition, defined as at a minimum temperature of 600° F (316°C) for not less than 30 min.

6. Chemical Requirements

6.1 The titanium shall conform to the chemical requirements prescribed in Table 1.

6.1.1 The elements listed in Table 1 are intentional alloy additions or elements that are inherent to the manufacture of titanium sponge, ingot, or mill product.

TABLE 3 Tensile Requirements

	Tensile Str	rength, min		Yield Strength, 0.2% Offset					
Grade		MB	m	in	ma	2 in. or 50			
	KSI	мра	ksi	MPa	ksi	MPa	— mm, min, %		
1 ^{<i>A</i>}	35	240	20	138	45	310	24		
2 ^{<i>A</i>}	50	345	40	275	65	450	20		
2H ^{<i>A</i>,<i>B</i>,<i>C</i>}	58	400	40	275	65	450	20		
3 ^A	65	450	55	380	80	550	18		
7 ^A	50	345	40	275	65	450	20		
7H ^{A,B,C}	58	400	40	275	65	450	20		
9 ^{<i>D</i>}	125	860	105	725			10		
9 ^A	90	620	70	483			15 ^E		
11 ^A	35	240	20	138	45	310	24		
12 ^A	70	483	50	345			18 ^E		
13 ^A	40	275	25	170			24		
14 ^A	60	410	40	275			20		
15 ^A	70	483	55	380			18		
16 ^A	50	345	40	275	65	450	20		
16H ^{A,B,C}	58	400	40	275	65	450	20		
17 ^A	35	240	20	138	45	310	24		
18 ^D	125	860	105	725			10		
18 ^A	90	620	70	483			15 ^E		
26	50	345	40	275	65	450	20		
26H ^{A,B,C}	58	400	40	275	65	450	20		
27	35	240	20	138	45	310	24		
28	90	620	70	483			15		
30	50	345	40	275	65	450	20		
31	65	450	55	380	80	550	18		
33	50	345	40	275	65	450	20		
34	65	450	55	380	80	550	18		
35	130	895	120	828	··· />		5		
36	65	450	60	410	95	655	10		
37	50	345	31	215	65	450	20		
38	130	895	115	794	(ie do		10		

^A Properties for material in the annealed condition.

^B Material is identical to the corresponding numeric grade (that is, Grade 2H = Grade 2) except for the higher guaranteed minimum UTS, and may always be certified as meeting the requirements of its corresponding numeric grade. Grade 2H, 7H, 16H, and 26H are intended primarily for pressure vessel use.

^C The H grades were added in response to a user association request based on its study of over 5200 commercial Grade 2, 7, 16, and 26 test reports, where over 99 % met the 58 ksi minimum UTS.

^D Properties for cold-worked and stress-relieved material.

^E Elongation for welded tubing manufactured from continuously cold rolled and annealed strip from coils for Grades 9, 12, and 18 will be 12 %.

6.1.2 Elements intentionally added to the melt must be identified, analyzed, and reported in the chemical analysis.

6.2 When agreed upon by the producer and the purchaser and requested by the purchaser in the written purchase order, chemical analysis shall be completed for specific residual elements not listed in this specification.

7. Product Analysis

7.1 When requested by the purchaser and stated in the purchase order, product analysis for any elements listed in Table 1 shall be made on the completed product.

7.1.1 Elements other than those listed in Table 1 are deemed to be capable of occurring in the grades listed in Table 1 by, and only by way of, unregulated or unanalyzed scrap additions to the ingot melt. Therefore, product analysis for elements not listed in Table 1 shall not be required unless specified and shall be considered to be in excess of the intent of this specification.

7.2 Product analysis tolerances, listed in Table 2, do not broaden the specified heat analysis requirements, but cover variations between different laboratories in the measurement of chemical content. The manufacturer shall not ship the finished product that is outside the limits specified in Table 1 for the applicable grade.

8. Tensile Requirements

8.1 The room temperature tensile properties of the tube in the condition normally supplied shall conform to the requirements prescribed in Table 3. Mechanical properties for conditions other than those given in this table may be established by agreement between the manufacturer and the purchaser. (See Test Methods E 8.)

9. Flattening Test

9.1 Tubing shall withstand, without cracking, flattening under a load applied gradually at room temperature until the distance between the load platens is not more than H in. H is calculated as follows:

$$H, \text{ in. } (\text{mm}) = \frac{(1+e)t}{e+t/D}$$
 (1)