

Designation: B 381 - 08

Standard Specification for Titanium and Titanium Alloy Forgings¹

This standard is issued under the fixed designation B 381; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This specification² covers 39 grades of annealed titanium and titanium alloy forgings as follows:
- 1.1.1 Grade F-1—Unalloyed titanium,
- 1.1.2 Grade F-2—Unalloyed titanium,
- 1.1.2.1 Grade F-2H—Unalloyed titanium (Grade 2 with 58 ksi minimum UTS),
- 1.1.3 Grade F-3—Unalloyed titanium,
- 1.1.4 Grade F-4—Unalloyed titanium,
- 1.1.5 Grade F-5—Titanium alloy (6 % aluminum, 4 % vanadium),
- 1.1.6 Grade F-6—Titanium alloy (5 % aluminum, 2.5 % tin),
- 1.1.7 Grade F-7—Unalloyed titanium plus 0.12 to 0.25 % palladium,
- 1.1.7.1 Grade F-7H—Unalloyed titanium plus 0.12 to 0.25 % palladium (Grade 7 with 58 ksi minimum UTS),
- 1.1.8 Grade F-9—Titanium alloy (3 % aluminum, 2.5 % vanadium),
- 1.1.9 Grade F-11—Unalloyed titanium plus 0.12 to 0.25 % palladium,
- 1.1.10 Grade F-12—Titanium alloy (0.3 % molybdenum, 0.8 % nickel),
- 1.1.11 Grade F-13—Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.12 Grade F-14—Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.13 Grade F-15—Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.14 Grade F-16—Unalloyed titanium plus 0.04 to 0.08 % palladium,
- 1.1.14.1 Grade F-16H—Unalloyed titanium plus 0.04 to 0.08 % palladium (Grade 16 with 58 ksi minimum UTS),
- 1.1.15 Grade F-17—Unalloyed titanium plus 0.04 to 0.08 % palladium,
- 1.1.16 Grade F-18—Titanium alloy (3 % aluminum, 2.5 % vanadium) plus 0.04 % to 0.08 % palladium,
- 1.1.17 Grade F-19—Titanium alloy (3 % aluminum, 8 % vanadium, 6 % chromium, 4 % zirconium, 4 % molybdenum),
- 1.1.18 *Grade F-20*—Titanium alloy (3 % aluminum, 8 % vanadium, 6 % chromium, 4 % zirconium, 4 % molybdenum) plus 0.04 to 0.08 % palladium,

 ASTM B381-08
 - 1.1.19 Grade F-21—Titanium alloy (3 % aluminum, 2.7 % niobium, 15 % molybdenum, 0.25 % silicon),
 - 1.1.20 Grade F-23—Titanium alloy (6 % aluminum, 4 % vanadium, extra low interstitials, ELI),
 - 1.1.21 Grade F-24—Titanium alloy (6 % aluminum, 4 % vanadium) plus 0.04 to 0.08 % palladium,
 - 1.1.22 Grade F-25—Titanium alloy (6 % aluminum, 4 % vanadium) plus 0.3 to 0.8 % nickel and 0.04 to 0.08 % palladium,
 - 1.1.23 Grade F-26—Unalloyed titanium plus 0.08 to 0.14 % ruthenium,
 - 1.1.23.1 Grade F-26H—Unalloyed titanium plus 0.08 to 0.14 % ruthenium (Grade 26 with 58 ksi minimum UTS),
 - 1.1.24 Grade F-27—Unalloyed titanium plus 0.08 to 0.14 % ruthenium,
 - 1.1.25 Grade F-28—Titanium alloy (3 % aluminum, 2.5 % vanadium plus 0.08 to 0.14 % ruthenium),
 - 1.1.26 Grade F-29—Titanium alloy (6 % aluminum, 4 % vanadium, extra low interstitial, ELI plus 0.08 to 0.14 % ruthenium),
 - 1.1.27 Grade F-30—Titanium alloy (0.3 % cobalt, 0.05 % palladium),
 - 1.1.28 Grade F-31—Titanium alloy (0.3 % cobalt, 0.05 % palladium),
 - 1.1.29 Grade F-32—Titanium alloy (5 % aluminum, 1 % vanadium, 1 % tin, 1 % zirconium, 0.8 % molybdenum),
 - 1.1.30 Grade F-33—Titanium alloy (0.4 % nickel, 0.015 % palladium, 0.025 % ruthenium, 0.15 % chromium),
 - 1.1.31 Grade F-34—Titanium alloy (0.4 % nickel, 0.015 % palladium, 0.025 % ruthenium, 0.15 % chromium),
 - 1.1.32 Grade F-35—Titanium alloy (4.5 % aluminum, 2 % molybdenum, 1.6 % vanadium, 0.5 % iron, 0.3 % silicon),
 - 1.1.33 Grade F-36—Titanium alloy (45 % niobium),
 - 1.1.34 Grade F-37—Titanium alloy (1.5 % aluminum), and

¹ This specification is under the jurisdiction of ASTM Committee B10 on Reactive and Refractory Metals and Alloys and is the direct responsibility of Subcommittee B10.01 on Titanium.

Current edition approved June 1, 2006:May 15, 2008. Published June 2006:2008. Originally approved in 1961. Last previous edition approved in 2006 as B 381 – 06a.
² For ASME Boiler and Pressure Vessel Code applications, see related Specification SB-381 in Section II of that Code.

1.1.35 Grade F-38—Titanium alloy (4 % aluminum, 2.5 % vanadium, 1.5 % iron).

Note 1—H grade material is identical to the corresponding numeric grade (that is, Grade 2H = Grade 2) except for the higher guaranteed minimum UTS, and may always be certified as meeting the requirements of its corresponding numeric grade. Grades 2H, 7H, 16H, and 26H are intended primarily for pressure vessel use.

The H grades were added in response to a user association request based on its study of over 5200 commercial Grade 2, 7, 16, and 26 test reports, where over 99 % met the 58 ksi minimum UTS.

1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

2. Referenced Documents

- 2.1 ASTM Standards: ³
- B 348 Specification for Titanium and Titanium Alloy Bars and Billets
- E 8 Test Methods for Tension Testing of Metallic Materials
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E 120 Test Methods for Chemical Analysis of Titanium and Titanium Alloys
- E 1409 Test Method for Determination of Oxygen and Nitrogen in Titanium and Titanium Alloys by the Inert Gas Fusion Technique
- E 1447 Test Method for Determination of Hydrogen in Titanium and Titanium Alloys by the Inert Gas Fusion Thermal Conductivity/Infrared Detection Method

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 *bar*, *n*—a hot rolled, forged or cold worked semifinished solid section product whose cross sectional area is less than 16 in.²(10 323 mm²).
- 3.1.2 billet, n—a solid semifinished section, hot rolled or forged from an ingot, with a cross sectional area greater than 16 in. 2 (10 323 mm 2).
- 3.1.3 *forging*, *n*—any product of work on metal formed to a desired shape by impact or pressure in hammers, forging machines, upsetters presses or related forming equipment.

4. Ordering Information

- 4.1 Orders for forgings under this specification shall include the following information, as applicable:
- 4.1.1 Grade number (Section 1),
- 4.1.2 Tensile properties (Table 1),
- 4.1.3 Dimensions and tolerances (Section 9),
- 4.1.4 Sampling, mechanical properties (Section 7),
- 4.1.5 Methods for chemical analysis (Section 6),
- 4.1.6 Marking (Section 16),
- 4.1.7 Packaging (Section 16),
- 4.1.8 Certification (Section 15),
- 4.1.9 Disposition of rejected material (Section 13), and
- 4.1.10Supplementary requirements (S1).

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

TABLE 1 Tensile Requirements^A

	Tensile St	rength, min	Yield Strength (0.2	2 % Offset), min or Range	Elongation in 4D,	Reduction of Area,	
Grade	ksi	ksi (MPa)		(MPa)	min, %	min, %	
F-1	35	(240)	20	(138)	24	30	
F-2	50	(345)	40	(275)	20	30	
F-2H ^{B,C}	58	(400)	40	(275)	20	30	
F-3	65†	(450)†	55	(380)	18	30	
F-4	80†	(550)†	70	(483)	15	25	
 F-5	130	(895)	120	(828)	10	25	
F-6	120	(828)	115	(795)	10	25	
F-7	50	(345)	40	(275)	20	30	
г-7 F-7Н ^{В,С}	58	(400)	40	(275)	20	30	
F-9	120	(828)	110	(759)	10	25	
F-9 ^D	90		70		15	25 25	
		(620)		(483)			
F-11	35	(240)	20	(138)	24	30	
F-12	70	(483)	50	(345)	18	25	
F-13	40	(275)	25	(170)	24	30	
F-14	60	(410)	40	(275)	20	30	
F-15	70	(483)	55	(380)	18	25	
F-16	50	(345)	40	(275)	20	30	
F-16H ^{B,C}	58	(400)	40	(275)	20	30	
F-17	35	(240)	20	(138)	24	30	
F-18	90	(620)	70	(483)	15	25	
F-18 ^D	90	(620)	70	(483)	12	20	
F-19 ^E	115	(793)	110	(759)	15	25	
F-19 ^F	135	(930)	130 to 159	(897) to (1096)	10	20	
F-19 ^{<i>G</i>}	165	(1138)	160 to 185	(1104) to (1276)	5	20	
F-20 ^{<i>E</i>}	115	(793)	110	(759)	15	25	
F-20 ^{<i>F</i>}	135	(930)	130 to 159	(897) to (1096)	10	20	
F-20 ^G	165	(1138)	160 to 185	(1104) to (1276)	5	20	
F-21 ^E	115	(793)	110	(759)	15	35	
F-21 ^{<i>F</i>}	140	(966)	130 to 159	(897) to (1096)	10	30	
F-21 ^{<i>G</i>}	170	(1172)	160 to 185	(1104) to (1276)	8	20	
F-23	120	(828)	110	(759)	10	25	
F-23 ^D	120	(828)	110	(759)	7.5 ^H , 6.0 ^I	25	
F-24	130	(895)	120	(828)	10	25	
F-25	130	(895)	120	(828)	10	25	
F-26	50	(345)	40	(275)	20	30	
F-26H ^{<i>B,C</i>}	58	(400)	m on 40 D	(275)	20	30	
F-27	35	(240)	20	(138)	24	30	
F-28	90	(620)	70	(483)	15	25	
				` ,			
F-28 ^D	90	(620)	70	(483)	12	20	
F-29	120	(828)	ASTM 110 81-((759)	10	25	
F-29 ^D	120	(828)	ASTIVI 110 01-0	(759)	7.5 ^H , 6.0 ^I	15	
F-30 https://stan	dards.itel 50 i/catal	og/stan(345) _{s/sis}	t/7deb6e49b-80	$7e^{-(275)}a - 943d - 64$	abd5642 <mark>2</mark> 0d7/astr	n-b381-308	
F-31 ±	65	(450)	55	(380)	18	30	
F-32	100	(689)	85	(586)	10	25	
F-33	50	(345)	40	(275)	20	30	
F-34	65	(450)	55	(380)	18	30	
F-35	130	(895)	120	(828)	5	20	
F-36	65	(450)	60 to 95	(410 to 655)	10		
F-37	50	(345)	31	(215)	20	30	
F-38	130	(895)	115	(794)	10	25	

A These properties apply to forgings having a cross section no greater than 3 in.2(1935 mm²). Mechanical properties of forgings having greater cross sections shall be negotiated between the manufacturer and the purchaser.

^B Material is identical to the corresponding numeric grade (that is, Grade F-2H = Grade F-2) except for the higher guaranteed minimum UTS, and may be dual certified

with its corresponding numeric grade. Grade F-2H, F-7H, F-16H, and F-26H are intended primarily for pressure vessel use.

C The H grades were added in response to a user association request based on its study of over 5200 commercial Grade 2, 7, 16, and 26 test reports where over 99 % met the 58 ksi minimum UTS.

^D Properties for material in transformed-beta condition.

^E Properties for material in the solution treated condition.

Properties for solution treated and aged condition-Moderate strength (determined by aging temperature).

Properties for solution treated and aged condition-High Strength (determined by aging temperature).

^H For product section or wall thickness values <1.0 in.

¹ For product section or wall thickness values ≤1.0 in.

[†] Tensile strength for Grade F-3 and F-4 was corrected editorially.

TABLE 2Chemical Requirements^A

Elomont	Composition, %													
Element	F-1	F-2 I	-2H	F-3	F	-4	F-5		F-6	F-7	F-7H	F-9	F-11	F-12
Vitrogen, max	0.03	0.03).03	0.05	E) .05	0.05		0.03	0.03	0.03	0.03	0.03	0.03
Sarbon, max	0.08		0.08	0.08		80.	0.08		0.08	0.08	0.08	0.08	0.08	0.08
Hydrogen, ^{B,C} max	0.015	0.015).015	0.015	€	.015	0.015		0.015	0.015	0.015	0.015	0.015	0.015
ron, max	0.20	0.30).30	0.30	€) .50	0.40		0.50	0.30	0.30	0.25	0.20	0.30
O xygen, max	0.18	0.25).25	0.35	€).40	0.20		0.20	0.25	0.25	0.15	0.18	0.25
Aluminum					-		5.5-6		4.0-6.0			2.5-3.5		
√anadium							3.5-4	_				2.0-3.0		
Tin									2.0 3.0					
Ruthenium														
Palladium										0.12-0.2			0.12-0.25	
Sobalt														
Volybdenum			 			 								0.2-0.
Chromium			 											
Vickel														0.6-0.
liobium														
														
Zirconium Silicon														
Silicon														
Residuals, ^{D,E,F} max	0.1	0.1).1	0.1	E) .1	0.1		0.1	0.1	0.1	0.1	0.1	0.1
Residuals, ^{D,E,F} naxtotal	0.4	0.4).4	0.4	€) .4	0.4		0.4	0.4	0.4	0.4	0.4	0.4
Fitanium ^G	balance	balance ł	alance	baland	ee t	alance	balan	ee	balance	balance	balance	balance	balance	balanc
Element							C	ompos	sition, %					
Element	F-13	F-14	F-15	F	-16	F-16I	+	F-17	F	-18	F-19	F-20	F-21	F-23
Nitrogen, max	0.03	0.03	0.05	Δ	.03	0.03		0.03).03	0.03	0.03	0.03	0.03
Carbon, max	0.03	0.03	0.03		.08	0.03		0.03		0.03	0.05	0.05	0.05 0.05	0.03
Hydrogen, ^{B,C} max					.00 .015			0.00					0.03 0.015	
	0.015	0.015	0.015			0.015).015	0.02	0.02		0.0125
Iron, max	0.20	0.30	0.30		.30	0.30		0.20) .25	0.30	0.30	0.40	0.25
Oxygen, max	0.10	0.15	0.25	0	.25	0.25		0.18).15	0.12	0.12	0.17	0.13
Aluminum		 \ _	T U	70 =	-/ / 5				2	2.5-3.5	3.0-4.0	3.0-4.0	2.5 - 3.5	5.5-6.5
Vanadium			 _						2	2.0-3.0	7.5-8.5	7.5–8.5		3.5-4.5
Fin				7					rox.	7i0xx	y 			
Ruthenium	0.04-0.06	0.04 0.06	0.04 0.	.06	: U.				IC 🗦	#IC AA				
Palladium				0	.04-0.0	8 0.04	0.08	0.04	-0.08 0).04-0.08		0.04-0.08		
Cobalt				-	.				-					
Molybdenum				-					-		3.5-4.5	3.5-4.5	14.0-16.0	
Chromium						ASTIV					5.5-6.5	5.5-6.5		
Nickel	0.4 0.6	0.4 0.6	0.4-0.6			. / 1				F 0.40.1	TC 4 1 15	77 4 1/7 /	= 100	
Niobium 1ttps://sta	ndards.1	te <u>h</u> a/cat	alog/sta	ında <u>r</u>		st/7 <u>d</u> eb		<u>-8</u> 0		1 a-943d	<u>-64abd5</u>	<u>64</u> aad7/a	2.2 3.2	3 <u>L</u> 08
Zirconium											3.5-4.5	3.5-4.5		
Silicon													0.15-0.25	
Residuals, ^{D,E,F} max														
nesiduais, — max each	0.1	0.1	0.1	0	.1	0.1		0.1	6).1	0.15	0.15	0.1	0.1
Residuals, D.E.F max	0.4	0.4	0.4	0	.4	0.4		0.4	e).4	0.4	0.4	0.4	0.4
total Titanium^G	balance	balance	balance	e b	alance	balan	ce	balan	ice b	alance	balance	balance	balance	balance
								Com	position,	0/				
Element													_	
		F-24	F-25			F-26			26H	F-2		F-28		-29
Nitrogen, max		0.05	0.05			0.03			03	0.0		0.03		.03
Carbon, max		80.0	9.08	}		0.08		0.	80	0.0)8	0.08	θ	.08
Hydrogen, B.C max	•	0.015	0.01	25		0.015		0.	015	0.0)15	0.015	θ	.015
Iron, max		0.40	0.40)		0.30		0.	30	0.2	20	0.25	θ	.25
Oxygen, max		0.20	0.20)		0.25		0.:	25	0.1	18	0.15		.13
Aluminum		5.5-6.75		6.75								2.5-3.5		.5-6.5
Vanadium		3.5-4.5	3.5-									2.0 3.0		.5-4.5
Tin				1.0										
						0.00.0.1	1		8 -0.14		00 0 14	 0.00.0.1	4 0	
Ruthenium						0.08-0.1	+)8-0.14	0.08-0.1		.08 0.14
Palladium		0.04-0.08	0.04	1-0.08										.
Cobalt														-
Molybdenum														.
Chromium														.
Nickel			0.3	0.8									-	
Niobium				-										
Zirconium														
Silicon													-	
			 0.1			 0.1								. .1
Residuals, D,E,F m		0.1						0.		0.1		0.1		

TABLE 2 Continued

Element Residuals, D.E.F max total Titanium ^G				Composition, %			
Liement	F-24	F-25	F-26	F-26H	F-27	F-28	F-29
	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Titanium^G	balance						

		Gomposition, %											
Element	F-30	F-31	F-32	F-33	F-34	F-35	F-36	F-37	F-38				
Nitrogen, max	0.03	0.05	0.03	0.03	0.05	0.05	0.03	0.03	0.03				
Carbon, max	0.08	0.08	0.08	0.08	0.08	0.08	0.04	0.08	0.08				
Hydrogen, B.C max	0.015	0.015	0.015	0.015	0.015	0.015	0.0035	0.015	0.015				
Iron, max or range	0.30	0.30	0.25	0.30	0.30	0.20 - 0.80	0.03	0.30	1.2-1.8				
Oxygen, max or	0.25	0.35	0.11	0.25	0.35	0.25	0.16	0.25	0.20 - 0.30				
range													
Aluminum			4.5-5.5			4.0-5.0		1.0 2.0	3.5 4.5				
Vanadium			0.6-1.4			1.1-2.1			2.0-3.0				
Tin			0.6-1.4										
Ruthenium				0.02-0.04	0.02-0.04								
Palladium Palladium	0.04-0.08	0.04-0.08		0.01-0.02	0.01-0.02								
Cobalt	0.20 0.80	0.20 0.80											
Molybdenum			0.6-1.2			1.5-2.5							
Chromium				0.1-0.2	0.1-0.2								
Nickel				0.35-0.55	0.35-0.55								
Niobium							42.0 47.0						
Zirconium			0.6-1.4										
Silicon			0.06-0.14			0.20 - 0.40							
Residuals, D.E.F max	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1				
each													
Residuals, D.E.F max	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4				
total													
Titanium^G	balance	balance	balance	Remainder	Remainder	Remainder	Remainder	Remainder	balance				

Analysis shall be completed for all elements listed in this table for each grade. The analysis results for the elements not quantified in the table need not be reported unless the concentration level is greater than 0.1% each or 0.4% total.

5. Materials and Manufacture

5.1 Material conforming to the latest revision of Specification B 348 shall be used when producing forgings to this specification.

6. Chemical Composition

- 6.1 The grades of titanium and titanium alloy metal covered by this specification shall conform to the requirements as to chemical composition prescribed in Table 2.
- 6.1.1 The elements listed in Table 2 are intentional alloy additions or elements which are inherent to the manufacturer of titanium sponge, ingot or mill product.
- 6.1.1.1 Elements other than those listed in Table 2 are deemed to be capable of occurring in the grades listed in Table 2 by and only by way of unregulated or unanalyzed scrap additions to the ingot melt. Therefore, product analysis for elements not listed in Table 2 shall not be required unless specified and shall be considered to be in excess of the intent of this specification.
 - 6.1.2 Elements intentionally added to the melt must be identified, analyzed, and reported in the chemical analysis.
- 6.2 When agreed upon by the producer and purchaser and requested by the purchaser in his written purchase order, chemical analysis shall be completed for specific residual elements not listed in this specification.
- 6.3 *Product Analysis* Product analysis tolerances do not broaden the specified heat analysis requirements, but cover variations between laboratories in the measurement of chemical content. The manufacturer shall not ship material which is outside the limits specified in Table 2 for the applicable grade. Product analysis limits shall be as specified in Table 3.
- 6.4 Sampling—Samples for chemical analysis shall be representative of material being tested. Except for hydrogen and unless otherwise specified, chemical analysis of ingot or billet shall be reported. Samples for hydrogen determination shall be obtained from the forgings on a test basis and a frequency as agreed upon between the forger and the purchaser. The utmost care must be used in sampling titanium for chemical analysis because of its great affinity for elements such as oxygen, nitrogen, and hydrogen. Therefore, the cutting and handling of samples should include practices that will prevent contamination. Samples shall be collected from clean metal.

^B Lower hydrogen may be obtained by negotiation with the manufacturer.

Final product analysis.

P Need not be reported

E A residual is an element present in a metal or an alloy in small quantities and is inherent to the manufacturing process but not added intentionally. In titanium these elements include aluminum, vanadium, tin, chromium, molybdenum, niobium, zirconium, hafnium, bismuth, ruthenium, palladium, yttrium, copper, silicon, cobalt, tantalum, nickel, boron, manganese, and tungsten.

The purchaser may, in his written purchase order, request analysis for specific residual elements not listed in this specification.

⁶ The percentage of titanium is determined by difference.

^{4.1.10} Supplementary requirements (S1).

TABLE 2 Chemical Requirements^A

	Composition, %											
Element	F-1	F-2	F-2H	F-3	F-4	F-5	F-6	<u>*</u> F-7	F-7H	F-9	F-11	F-12
Nitrogen, max Carbon, max Hydrogen, ^{B,C} max Iron, max Oxygen, max Aluminum Vanadium Tin Ruthenium Palladium	0.03 0.08 0.015 0.20 0.18 	0.03 0.08 0.015 0.30 0.25 	0.03 0.08 0.015 0.30 0.25 	0.05 0.08 0.015 0.30 0.35 	0.05 0.08 0.015 0.50 0.40 	0.05 0.08 0.015 0.40 0.20 5.5–6. 3.5–4. 	0.03 0.08 0.015 0.50 0.20 75 4.0-6.0	0.03 0.08 0.015 0.30 0.25	0.03 0.08 0.015 0.30 0.25 	0.03 0.08 0.015 0.25 0.15 2.5–3.5 2.0–3.0	0.03 0.08 0.015 0.20 0.18 0.12–0.25	0.03 0.08 0.015 0.30 0.25
Cobalt Molybdenum Chromium Nickel Niobelum Zirconium Silicon Residuals, P.E.F	::: ::: ::: ::: ::: ::: ::: ::: ::: ::	::: ::: ::: ::: ::: ::: ::: ::: ::: ::	::: ::: ::: ::: ::: ::: ::: ::: ::: 0.1	::: ::: ::: ::: ::: ::: ::: ::: ::: 0.1	::: ::: ::: ::: ::: ::: ::: ::: ::: ::	::: ::: ::: ::: ::: ::: ::: ::: 0.1	::: ::: ::: ::: ::: ::: ::: 0.1	::: ::: ::: ::: ::: ::: ::: 0.1	 0.1	::: ::: ::: ::: ::: ::: ::: ::: 0.11	::: ::: ::: ::: ::: ::: ::: 0.1	 0.2-0.4 0.6-0.9 0.1
max each Residuals, D, E, F	0.4	0.4	0.4	<u>0.4</u>	0.4	0.4	0.4	0.4	0.4	0.4	<u>0.4</u>	<u>0.4</u>
max total Titanium ^G	balance	balance	balance	<u>balance</u>	<u>balance</u>	baland	<u>e</u> <u>balanc</u>	<u>balanc</u>	e <u>balance</u>	balance	balance	balance
Element						Co	mposition, 9	%				
	<u>F-13</u>	<u>F-14</u>	<u>F-15</u>	<u>F-16</u>	<u>F-16</u>		F-17	<u>F-18</u>	<u>F-19</u>	<u>F-20</u>	<u>F-21</u>	<u>F-23</u>
Nitrogen, max Carbon, max Hydrogen, ^{8,6} max Iron, max Oxygen, max Aluminum Vanadium Tin Ruthenium Palladium Cobalt Molybdenum Chromium Nickel	0.03 0.08 0.015 0.20 0.10 0.04-0.0	0.03 0.08 0.015 0.30 0.15 6 0.04-0.0	0.05 0.08 0.015 0.30 0.25 	0.04- 	0.30 0.25 0.08 0.04 	5 and a day and	0.03 0.08 0.015 0.20 0.18 0.04–0.08	0.03 0.08 0.015 0.25 0.15 2.5-3.5 2.0-3.0 0.04-0.08 	0.03 0.05 0.02 0.30 0.12 3.0-4.0 7.5-8.5 3.5-4.5 5.5-6.5	0.03 0.05 0.02 0.30 0.12 3.0-4.0 7.5-8.5 0.04-0.08 3.5-4.5 5.5-6.5 	0.03 0.05 0.015 0.40 0.17 2.5–3.5 14.0–16.0	0.03 0.08 0.0125 0.25 0.13 5.5-6.5 3.5-4.5
Niobium IUPS://Sta Zirconium Silicon Residuals, ^{D,E,F} max	an <u>a.</u> ards. <u>0.1</u>	пе <u>п.</u> а/са <u>0.1</u>	atalo <u>e</u> /sta <u>0.1</u>	inda <u>ri</u> as/ ::: <u>0.1</u>	sist// <u>al</u> et ::: <u>0.1</u>		<u></u> 80 / e-4 ::: <u></u> <u>0.1</u>	1 <u></u> a-9430 <u>0.1</u>	3.5–4.5 0.15	<u></u> 4aad7/ <u>3.5–4.5</u> <u>0.15</u>	2.2–3.2 0.15–0.25 0.1	<u></u> 08 0.1
each Residuals, ^{D,E,F} max total	0.4	0.4	<u>0.4</u>	0.4	0.4		0.4	0.4	0.4	<u>0.4</u>	0.4	0.4
Titanium ^G	balance	balance	balance	<u>balan</u>	ce <u>bala</u>	nce	<u>balance</u>	balance	balance	balance	balance	balance
FI.							Compositio	n, %				
Element		<u>F-24</u>	F-25	5	<u>F-26</u>		<u>F-26H</u>	<u>F</u>	-27	<u>F-28</u>	<u> </u>	-29
Nitrogen, max Carbon, max Hydrogen, max Iron, max Oxygen, max Aluminum Vanadium Tin Ruthenium Palladium Cobalt Molybdenum Chromium Nickel Niobium Zirconium Silicon Residuals, D.E.F. m		0.05 0.08 0.015 0.40 0.20 5.5-6.75 3.5-4.5 0.04-0.08 	3.5- 	125 0 0 1-6.75 4.5	0.03 0.08 0.015 0.30 0.25 0.08-0.1 	4	0.03 0.08 0.015 0.30 0.25 0.8–0.14 	0 0 0 0 		0.03 0.08 0.015 0.25 0.15 2.5–3.5 2.0–3.0 0.08–0.1 	0 0 0 0 5 3 3 3 4 4 0 4 2 2 2 2 2 2 3 2 3 2 3 4 4 2 3 3 4 3 4	= = = =