INTERNATIONAL STANDARD

Second edition 2016-11-01

Metallic materials — Instrumented indentation test for hardness and materials parameters —

Part 4: **Test method for metallic and noniTeh STANDARD PREVIEW**

S Matériaux métalliques — Essai de pénétration instrumenté pour la détermination de la dureté et de paramètres des matériaux —

Partie 4: Méthode d'essai pour les revêtements métalliques et non https://standards.iteh.métalliques.lards/sist/52d9939d-175f-4fe9-a316-16bdba95a47b/iso-14577-4-2016

Reference number ISO 14577-4:2016(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 14577-4:2016</u> https://standards.iteh.ai/catalog/standards/sist/52d9939d-175f-4fe9-a316-16bdba95a47b/iso-14577-4-2016

© ISO 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Page

Contents

Forew	vord	iv	
Introd	duction	v	
1	Scope	1	
2	Normative references	1	
3	Symbols and designations	2	
4	Calibration and direct verification of testing machines	2	
5	Test pieces 5.1 General 5.2 Surface roughness 5.3 Polishing 5.4 Surface cleanliness	2 2 2 3 3	
6	Procedure 6.1 Test conditions 6.2 Measurement procedure 6.2.1 General 6.2.2 Force control experiments		
7	 Data analysis and evaluation of results for indentation normal to the surface 7.1 General 7.2 Coating indentation modulus 7.3 Coating indentation hardness 	5 	
8	Uncertainty of the results	15	
9	Test report <u>ISO 14577-4:2016</u>		
Annex	https://standards.iteb.ai/catalog/standards/sist/52d9939d-175t-4fe9-a316- Annex A (informative) Contact point and fully elastic regime		
Biblio	Bibliography		

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

The committee responsible for this document is ISO/TC 164, *Mechanical testing of metals*, Subcommittee SC 3, *Hardness testing*.

 ISO 14577-4:2016

 This second edition cancelss: and replaces the girst aedition 2 (ISO 14577: 4:2007), which has been technically revised.

 16bdba95a47b/iso-14577-4-2016

ISO 14577 consists of the following parts, under the general title *Metallic materials* — *Instrumented indentation test for hardness and materials parameters*:

- Part 1: Test method
- Part 2: Verification and calibration of testing machines
- Part 3: Calibration of reference blocks
- Part 4: Test method for metallic and non-metallic coatings

Introduction

The elastic and plastic properties of a coating are critical factors determining the performance of the coated product. Indeed, many coatings are specifically developed to provide wear resistance that is usually conferred by their high hardness. Measurement of coating hardness is often used as a quality control check. Young's modulus becomes important when calculation of the stress in a coating is required in the design of coated components. For example, the extent to which coated components can withstand external applied forces is an important property in the capability of any coated system.

It is relatively straightforward to determine the hardness and indentation modulus of bulk materials using instrumented indentation. However, when measurements are made normal to a coated surface, depending on the force applied and the thickness of the coating, the substrate properties influence the result.

The purpose of this part of ISO 14577 is to provide guidelines for conditions where a significant influence of the substrate is detected and to provide possible analytical methods to enable the coating properties to be extracted from the composite measurement. In some cases, the coating property can be determined directly from measurements on a cross-section.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 14577-4:2016</u> https://standards.iteh.ai/catalog/standards/sist/52d9939d-175f-4fe9-a316-16bdba95a47b/iso-14577-4-2016

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 14577-4:2016</u> https://standards.iteh.ai/catalog/standards/sist/52d9939d-175f-4fe9-a316-16bdba95a47b/iso-14577-4-2016

Metallic materials — Instrumented indentation test for hardness and materials parameters —

Part 4: Test method for metallic and non-metallic coatings

1 Scope

This part of ISO 14577 specifies a method for testing coatings which is particularly suitable for testing in the nano/micro range applicable to thin coatings. However, the application of this method of this part of ISO 14577 is not needed if the indentation depth is such a small fraction of the coating thickness that in any possible case a substrate influence can be neglected and the coating can be considered as a bulk material. Limits for such cases are given.

This test method is limited to the examination of single layers when the indentation is carried out normal to the test piece surface, but graded and multilayer coatings can also be measured in cross-section if the thickness of the individual layers or gradations is greater than the spatial resolution of the indentation process.

The test method is not limited to any particular type of material. Metallic and non-metallic coatings are included in the scope of this part of ISO 14577. In this part of ISO 14577, the term coating is used to refer to any solid layer with homogeneous properties different to that of a substrate it is connected to. The method assumes that coating properties are constant with indentation depth. Composite coatings are considered to be homogenous if the structure size is than the indentation size.

The application of this part of ISOb145774 regarding measurement of indentation hardness is only possible if the indenter is a pyramid or a cone with a radius of tip curvature small enough for plastic deformation to occur within the coating. The hardness of visco-elastic materials or materials exhibiting significant creep will be strongly affected by the time taken to perform the test.

NOTE 1 ISO 14577-1, ISO 14577-2 and ISO 14577-3 define usage of instrumented indentation testing of bulk materials over all force and displacement ranges.

NOTE 2 The analysis used here does not make any allowances for pile-up or sink-in of indents. Use of Atomic Force Microscopy (AFM) to assess the indent shape allows the determination of possible pile-up or sink-in of the surface around the indent. These surface effects result in an under-estimate (pile-up) or over-estimate (sink-in) of the contact area in the analysis and hence may influence the measured results. Pile-up generally occurs for fully work-hardened materials. Pile-up of soft, ductile materials is more likely for thinner coatings due to the constraint of the stresses in the zone of plastic deformation in the coating. It has been reported that the piled up material results in an effective increase of the contact area for the determination of hardness, while the effect is less pronounced for the determination of indentation modulus, since the piled up material behaves less rigidly.[1][2]

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 14577-1:2015, Metallic materials — Instrumented indentation test for hardness and materials parameters — Part 1: Test method

ISO 14577-2:2015, Metallic materials — Instrumented indentation test for hardness and materials parameters — Part 2: Verification and calibration of testing machines

ISO/IEC Guide 98-3, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM)

3 Symbols and designations

ISO 14577-1:2015, Table 1 provides a listing of symbols and their related designations. Additional symbols and designations used in this international standard are included in <u>Table 1</u>.

Symbol	Designation	Unit
а	Radius of contact	mm
t _c	Thickness of the coating	mm
E _{ITc}	Indentation modulus of the coating	GPa
E _{ITc} *	Indentation plane-strain modulus of the coating	GPa
H _{ITc}	Indentation hardness of the coating	GPa

Table 1 — Symbols and designations

4 Calibration and direct verification of testing machines

The instrument shall be calibrated and directly verified according to the procedures set out in ISO 14577-2:2015, Clause 4.

Indirect verification according to the procedure specified in ISO 14577-2:2015, Clause 5, using a reference material, shall be made to ensure that a new direct verification is not needed and that no damage or contamination has occurred to the indenter tip.

Indentation experiments may be performed with a variety of differently shaped indenters which should be chosen to optimize the plastic and elastic deformation required for a given coating substrate system. Typical indenter shapes are Vickers, Berkovich, conical, spherical and corner cube.

For the determination of coating plastic properties, pointed indenters are recommended. The thinner the coating, the sharper the indenter should be. For the determination of coating elastic properties, any geometry indenter may be used provided that its area function is known. If only the elastic properties of the coating are required, indentations in the fully elastic regime are recommended (if possible) as this avoids problems due to fracture, pile-up and high creep rates. A larger radius indenter tip or sphere will allow fully elastic indentations over a larger force range than a smaller radius indenter. However, too large a radius and surface effects will dominate the measurement uncertainties (roughness, surface layers, etc.). Too small a radius and the maximum force or displacement before plastic deformation begins will be very low. The optimum can be identified by preliminary experiments or modelling (see <u>Clause 7</u>).

5 Test pieces

5.1 General

Generally, surface preparation of the test piece should be kept to a minimum and, if possible, the test piece should be used in the as-received state if the surface condition conforms to the criteria given in 5.2, 5.3 and 5.4.

5.2 Surface roughness

Indentation into rough surfaces will lead to increased scatter in the results with decreasing indentation depth (see ISO 14577-1:2015, Annex E). Clearly, when the roughness value, *Ra*, approaches the same value as the indentation depth, the contact area will vary greatly from indent to indent depending on its position relative to peaks and valleys at the surface. The final surface finish should be as smooth

as available experience and facilities permit. The *Ra* value should be less than 5 % of the maximum penetration depth whenever possible.

NOTE It has been shown that for a Berkovich indenter, the angle that the surface normal presents to the axis of indentation has to be greater than 7° for significant errors to result.^[3] The important angle is that between the indentation axis and the local surface normal at the point of contact. This angle may be significantly different from the average surface plane for rough surfaces.

While Ra has been recommended as a practical and easily understood roughness parameter, this is an average. Thus, single peaks and valleys may be greater than this as defined by the Rz value, although the likelihood of encountering the maximum peak, for example, on the surface is small. Modelling to investigate the roughness of the coating surface^[4] [5] has concluded that there are two limiting situations for any Ra value. When the "wavelength" of the roughness (in the plane of the coating surface) is much greater than the indenter tip radius, the force-penetration response is determined by the local coating surface curvature, but when the wavelength is much less than the tip radius, asperity contact occurs and the effect is similar to having an additional lower modulus coating on the surface.

In cases where coatings are used in the as-received condition, random defects (such as nodular growths or scratches) might be present. Where an indentation site imaging system is included in the testing machine, it is recommended that "flat" areas away from these defects be selected for measurement.

The radius of the roughness profilometer probe should be less than the indenter radius. If the roughness parameter Ra is determined with an AFM on a scan area, a scan area of 10 μ m × 10 μ m is recommended.

Some instruments are capable of scanning the indentation site before indentation. In this case, areas with the required local slope and roughness may be selected for indentation in surfaces that might otherwise, on average, be too rough.

(standards.iteh.ai)

5.3 Polishing

It should be appreciated that mechanical polishing of surfaces can result in a change in the work hardening and/or the residual stress state of the surface and, consequently, the measured hardness. For ceramics, this is less of a concern than for metals, although surface damage can occur. Grinding and polishing shall be carried out such that any stress induced by the previous stage is removed by the subsequent stage, and the final stage shall be with a grade of polishing medium appropriate to the displacement scale being used in the test. If possible, electrochemical polishing should be used.

NOTE 1 Many coatings replicate the surface finish of the substrate. If it is acceptable to do so, surface preparation problems can be reduced by ensuring that the substrate has an appropriate surface finish, thus eliminating the need to prepare the surface of the coating. In some cases, however, changing the substrate surface roughness may affect other coating properties; therefore, care should be taken when using this approach.

NOTE 2 In coatings, it is common to get relatively large residual stresses (e.g. arising from thermal expansion coefficient mismatch between the coating and the substrate and/or stress induced by the coating deposition process). Thus, a stress-free surface would not normally be expected. Furthermore, stress gradients in coatings are not uncommon, so that removal of excessive material during a remedial surface preparation stage may result in a significant departure from the original surface state.

NOTE 3 Polishing reduces the coating thickness and so the effects of the substrate will be enhanced when indenting normal to the surface. Where the data analysis requires an accurate knowledge of the coating thickness indented, polishing will require re-measurement of coating thickness. This again emphasizes the need to carry out minimum preparation.

5.4 Surface cleanliness

Generally, provided the surface is free from obvious surface contamination, cleaning procedures should be avoided. If cleaning is required, it shall be limited to methods that minimize damage, for example

— application of dry, oil-free, filtered gas stream,

- application of subliming particle stream of CO_2 (taking care not to depress the surface temperature below the dew point), and
- rinsing with a solvent (which is chemically inert to the test piece) and then drying.

Ultrasonic methods are known to create or increase damage to coatings and should be used with caution.

6 Procedure

6.1 Test conditions

6.1.1 The indenter geometry, maximum force and/or displacement and force displacement cycle (with suitable hold periods) shall be selected by the operator to be appropriate to the coating to be measured and the operating parameters of the instrument used (see Figure 1).

Indentation hardness values are only valid if plastic deformation has occurred so that there is a residual indentation after force removal. Therefore, if both hardness and modulus are required from a single set of indentations, then a small radius tip is required and a self-similar geometry.

NOTE 1 A typical "small" radius for hardness measurement is that of a Berkovich indenter (<250 nm). A typical "large" radius for modulus measurement is <25 μ m. In certain cases, a change of indenter can be avoided by force selection. The range of elastic deformation can be estimated by the formulae in <u>Annex A</u>.

NOTE 2 An example of a simplified stress analysis is given in 7.3, Note 4: VIEW

6.1.2 Where multiple indentations normal to the surface or indentations in cross-section are planned, each indent shall be positioned and separated according to ISO 14577-1:2015, 7.7. ISO 14577-4:2016

NOTE Coatings can display a high degree of anisotropy, and thus the orientation of the indenter within the plane and the direction of indentation (normal or cross-section) can significantly alter the measured value of the hardness and sometimes the modulus.

6.1.3 The parameters of the instrumented indentation test are defined according to ISO 14577-1:2015, 7.4.

The following parameters of coating/substrate influencing the measurement result should be considered:

- a) substrate hardness, Young's modulus and Poisson's ratio;
- b) coating thickness;
- c) surface roughness;
- d) adhesion of the coating to the substrate (delamination of the coating should be avoided).

All these parameters should be kept constant if a direct comparison of force displacement curves is to be made in order to detect a relative change in properties between two or more test pieces.

The time dependence of the material parameter being measured should be taken into account.

NOTE 1 Hardness and Young's modulus values can be affected by adhesion.^{[6][7][8][9][10]}

NOTE 2 Variations in test piece parameters other than hardness or modulus can affect measurement of these quantities. If the indentation depth is a sufficiently small fraction of the coating thickness, or the coating thickness may be reasonably well estimated and is constant for all indentation sites on a particular sample, it is possible to measure $E_{\rm ITc}^*$ and $H_{\rm ITc}$ without an accurate thickness measurement. If, however, the properties as a function of relative indentation depth are to be compared, an accurate thickness determination may be necessary. The exact limits depend on the ratio of properties of coating and substrate.

6.2 Measurement procedure

6.2.1 General

Introduce the prepared test piece and position it so that testing can be undertaken at the desired location.

Carry out the predetermined number of indentation cycles using the selected test conditions.

6.2.2 Force control experiments

A single force application and removal cycle shall be used. A decision tree to assist in estimating the drift during the experiment is shown in ISO 14577-1:2015, Annex G.

NOTE In case of displacement control measurements, the creep effects prevent an accurate determination of the slope of the unloading curve at maximum force and this will result in an incorrect hardness and modulus calculation. Furthermore, displacement control measurements do not allow thermal displacement drift correction.

7 Data analysis and evaluation of results for indentation normal to the surface

7.1 General

Before the data obtained during the indentation experiments can be analysed, it is necessary to have corrected the displacement data for significant thermal drift, determined the values of $A_p(h_c)$ and obtained C_s (the contact compliance) by correcting the data for the instrument frame compliance, C_f . The hardness and indentation modulus of the test piece can then be calculated using formulae in ISO 14577-1:2015, Annex A. ISO 14577-2:2015, Annex D describes the determination of C_s and C_f . The properties thus calculated according to ISO 14577-1 are composite properties for the coating/substrate combination. 7.2 and 7.3 provide methods for extracting the hardness and indentation modulus of the coating from the composite properties measured assuming that the coating properties are constant with depth.

NOTE 1 For indentation into a cross-section, the values obtained using ISO 14577-1 can be considered to be those of the coating, provided that the recommendations in <u>6.1.2</u> have been followed.

NOTE 2 Empirical guidelines are given in Reference [11] for hardness measurement of electroplated coatings on steels, where it is recommended that the indentation depth does not exceed one tenth the thickness of the coating.

Test parameters for ductile and brittle coatings shall be considered separately.

For indentation normal to the surface, elastic deformation of the substrate will always occur for all coatings, even though this could be negligibly small for a thick compliant coating on a stiff substrate. Thus, the measured modulus will always be the composite modulus of the coating and substrate, and the value obtained will be a function of indentation depth.

For hardness measurement, it is recommended to use as small a radius indenter as possible (i.e. as sharp as possible) to limit the plastic deformation to be within the coating. A measurement of the uncoated substrate hardness is a useful guide to the appropriate choice of analysis (soft vs. hard). In some circumstances, it is possible to identify a range of indentation depth over which the measured hardness is constant (i.e. before the onset of substrate plastic deformation) and then carry out indentation experiments within this range.

Estimates of coating hardness and modulus may be extracted from the composite values E_{IT}^* , H_{IT} obtained from indentation normal to the surface by expressing those composite values as a function of contact radius *a* or contact depth h_c normalized to coating thickness. Measurement of coating thickness, t_c , is not required to obtain an accurate intercept value. However, if data from different thickness coatings are to be plotted together, or the maximum range of indentation depth for valid data