INTERNATIONAL STANDARD

ISO 4097

Sixth edition 2014-10-01

Rubber, ethylene-propylene-diene (EPDM) — Evaluation procedure

Caoutchouc éthylène-propylène-diène (EPDM) — Méthode d'évaluation

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 4097:2014 https://standards.iteh.ai/catalog/standards/sist/3f346f26-d8a5-4d33-9849c07b8f2c0924/iso-4097-2014

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 4097:2014 https://standards.iteh.ai/catalog/standards/sist/3f346f26-d8a5-4d33-9849c07b8f2c0924/iso-4097-2014

COPYRIGHT PROTECTED DOCUMENT

© ISO 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents		Page	
For	eword		
1	Scope	1	
2	Normative references	1	
3	Sampling and sample preparation	1	
4	Physical and chemical tests on raw rubber 4.1 Mooney viscosity 4.2 Volatile matter 4.3 Ash	2 2	
5	Preparation of test mixes for evaluation 5.1 Standard test formulations 5.2 Equipment and procedure 5.3 Mixing procedures		
6	Evaluation of vulcanization characteristics by a curemeter test 6.1 Using an oscillating-disc curemeter 6.2 Using a rotorless curemeter	8 8	
7	Evaluation of tensile stress-strain properties of vulcanized test mixes	9	
8	Precision	9	
9	Test report iTeh STANDARD PREVIEW	9	
Ann	nex A (informative) Precision standards.iteh.ai)	10	
Ann	nex B (informative) Standard test formulations of ISO 4097:2007	13	
Bib	liography ISO 4097:2014	16	

https://standards.iteh.ai/catalog/standards/sist/3f346f26-d8a5-4d33-9849c07b8f2c0924/iso-4097-2014

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 45, Rubber and rubber products, Subcommittee SC 3, Raw materials (including latex) for use in the rubber industry.

This sixth edition cancels and replaces the fifth edition (ISO 4097:2007) which has been technically revised with the following changes: c07b8f2c0924/iso-4097-2014

- addition of new standard test formulations for the evaluation of EPDM rubbers (Table 1);
- removal of tetramethyl thiuram disulfide (TMTD) from the standard test formulations;
- changes in mixing procedures (5.3): inclusion of two-stage mixing and laboratory internal mixer;
- addition of a statement that single-stage mixing is the preferred method (5.3.1);
- addition of new precision data in a new informative Annex A;
- the standard test formulations and the precision data of the fifth edition (ISO 4097:2007) were moved to a new informative Annex B;
- addition of a statement in <u>Annex B</u> to explain that the standard formulations of the fifth edition (ISO 4097:2007) are retained until the next systematic review with a limitation of five years.

Rubber, ethylene-propylene-diene (EPDM) — Evaluation procedure

WARNING — Persons using this International Standard should be familiar with normal laboratory practice. This International Standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions.

1 Scope

This International Standard specifies the following:

- physical and chemical tests on raw rubbers;
- standard materials, standard test formulations, equipment, and processing methods for evaluating the vulcanization characteristics of ethylene-propylene-diene rubbers (EPDM), including oilextended types.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 37, Rubber, vulcanized or thermoplastid Defermination of tensile stress-strain properties https://standards.iteh.ai/catalog/standards/sist/3f346f26-d8a5-4d33-9849-ISO 247, Rubber — Determination of ash_{08f2c0924/iso-4097-2014}

ISO 248-1, Rubber, raw — Determination of volatile-matter content — Part 1: Hot-mill method and oven method

ISO 248-2, Rubber, raw — Determination of volatile-matter content — Part 2: Thermogravimetric methods using an automatic analyser with an infrared drying unit

 $ISO\,289-1, Rubber, unvulcanised -- Determinations using a shearing-disc viscometer -- Part\,1: Determination of Mooney viscosity$

ISO 1795, Rubber, raw natural and raw synthetic — Sampling and further preparative procedures

ISO 2393, Rubber test mixes — Preparation, mixing and vulcanization — Equipment and procedures

ISO 3417, Rubber — Measurement of vulcanization characteristics with the oscillating disc curemeter

ISO 6502, Rubber — Guide to the use of curemeters

ISO 23529, Rubber — General procedures for preparing and conditioning test pieces for physical test methods

3 Sampling and sample preparation

- **3.1** Take a laboratory sample of approximately 1,5 kg by the method described in ISO 1795.
- **3.2** Prepare the test portion in accordance with ISO 1795.

4 Physical and chemical tests on raw rubber

4.1 Mooney viscosity

Determine the Mooney viscosity in accordance with ISO 289-1, on a test portion prepared as indicated in 3.2 (without massing).

If massing is necessary, maintain the mill roll surface temperature at 50 °C \pm 5 °C (for rubbers with a low Mooney viscosity, a temperature of 35 °C \pm 5 °C can be used). Massing, if used, shall be mentioned in the test report.

Record the result as ML(1+4) at 125 °C unless another test temperature (100 °C or 150 °C) and/or test time (1+8) min has been agreed by the interested parties.

4.2 Volatile matter

Determine the volatile matter content in accordance with ISO 248-1 or ISO 248-2.

4.3 Ash

Determine the ash content in accordance with method A or method B of ISO 247.

5 Preparation of test mixes for evaluation

iTeh STANDARD PREVIEW

5.1 Standard test formulations

(standards.iteh.ai)

The standard test formulations are given in <a>Table 1, in which:

- a) formulation 1 is applicable to non-oil-extended supplied with a nominal ethylene content not higher than 67 % by mass; c07b8f2c0924/iso-4097-2014
- b) formulation 2 is applicable to non-oil-extended EPDMs with a nominal ethylene content equal to or higher than 67 % by mass;
- c) formulation 3 is applicable to non-oil-extended low Mooney viscosity EPDMs;
- d) formulation 4 is applicable to oil-extended EPDMs containing 50 or less parts by mass of oil per 100 parts of rubber;
- e) formulation 5 is applicable to oil-extended EPDMs containing more than 50 but less than 80 parts by mass of oil per 100 parts of rubber;
- f) formulation 6 is applicable to oil-extended EPDMs containing 80 or more parts by mass of oil per 100 parts of rubber.

The materials used shall be national or International Standard reference materials unless no standard reference material is available in which case the materials to be used shall be agreed between the interested parties.

Table 1 — Standard test formulations for evaluation of EPDM rubbers

	Test formulation						
Material	1	2	3	4	5	6	
Part				ts by mass			
EPDM	100,00	100,00	100,00	$100,00 + x^a$	100,00 + yb	100,00 + z ^c	
Stearic acid	1,00	1,00	1,00	1,00	1,00	1,00	
Industry reference black ^d	80,00	100,00	40,00	80,00	80,00	150,00	
ASTM 103 oile	50,00	75,00	_	50,00 – <i>x</i> a	_	_	
Zinc oxide	5,00	5,00	5,00	5,00	5,00	5,00	
Sulfur	1,50	1,50	1,50	1,50	1,50	1,50	
N-Cyclohexyl-2-Mercapt obenzothiazilesulphena mide(CBS)	3,5	3,5	3,5	3,5	3,5	3,5	
Mercaptobenzothiazole (MBT)	1,0	1,0	1,0	1,0	1,0	1,0	
Total	242,00	287,00	152,00	242,00	192,00 + yb	262,00 + z ^c	

^a x is the number of parts by mass of oil per 100 parts of base rubber for types having an oil content of 50 or less.

5.2 Equipment and procedure

Equipment and procedure for the preparation, mixing, and vulcanization shall be in accordance with ISO 2393.

5.3 Mixing procedures

5.3.1 General

Four alternative mixing procedures are specified.

- Method A1: single stage mixing with LIM (laboratory internal mixer) which is the preferred method.
- Method A2: two-stage mixing with LIM.
- Method A3: two-stage mixing using a LIM for initial mixing and mill mixing for final mixing.
- Method B: mill mixing.

Mixing of ethylene-propylene-diene rubbers in the standard test formulations using a mill is more difficult than for other rubbers and the use of a LIM allows better results. Because of the difficulty of mill mixing EPDM rubbers, it is recommended that method B be used only if a LIM is not available.

b y is the number of parts by mass of oil per 100 parts of base rubber for types having an oil content more than 50 but less than 80.

iTeh STANDARD PREVIEW

z is the number of parts by mass of oil per 100 parts of base rubber for types having a minimum oil content of 80.

d The current industry reference black (18B) is used. ds.iteh.ai)

This oil density is 0,92 g/cm³. Alternative oils can be used but might give slightly different results. ASTM 103 oil is an example of a suitable product available commercially It is produced by the Sun Refining and Marketing Company and distributed by R.E. Carroll Inc. 1570 North Olden Avenue Ext. Trenton, NJ 08638 JUSA. Overseas requests should be directed to Sunoco Overseas Inc., 1801 Market Street, Philadelphia, PA 19103-1629, USA. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by ISO of this product.

5.3.2 LIM mixing for methods A1, A2, and A3

5.3.2.1 General

The mixing technique in each method can be modified to achieve a good dispersion of all the ingredients. The LIM conditions shall be the same during the preparation of a series of identical mixes for each batch mixed. At the beginning of each series of test mixes, a machine-conditioning batch shall be mixed using the same formulation as the mixes under test. The LIM shall be allowed to cool down to $60\,^{\circ}\text{C}$ between the end of one test batch and the start of the next. Temperature control condition shall not be altered during the mixing of a series of test.

5.3.2.2 Method A1 — Single stage mixing with LIM

The final temperature of the batch discharged after mixing shall not exceed 120 °C. If necessary, adjust the batch mass, head temperature, or rotors speed, so that this condition is met.

Compounding materials other than rubber, carbon black, and oil can be added to LIM batches more precisely and with greater ease if they are previously blended together in the proportions required by the formulation. Such blends can be made using a mortar and pestle, by mixing for 10 min in a biconical blender with intensifier bar turning, or by mixing in a blender for five 3 s-periods and scraping the inside of the blender to dislodge materials stuck to the sides after each 3 s-mix. A Waring¹⁾ blender has been found suitable for this method.

Caution — If mixed longer than 3 s, the stearic acid can melt and prevent good dispersion.

NOTE An example of mixing procedure for LIM is as follows. PREVIEW

	(standards.iteh.ai)	Duration (min)	Cumulative time (min)
a) cate	Load the rubber, lower the sam and allow the subbers to be masti-188 ed. c07b8f2c0924/iso-4097-2014	5-4 £0 -9849-	1,0
	Raise the ram and add the pre-blended zinc oxide, sulfur, stearic d, and accelerators, taking care to avoid any loss. Then add the carblack and oil, sweep the orifice, and lower the ram.	1,0	2,0
c)	Allow the batch to mix.	7,0	9,0
	Total time (max)	9,0	

- d) Turn off the motor, raise the ram, remove the mixing chamber, and discharge the batch. Record the maximum batch temperature.
- e) After discharging the mixed batch, immediately pass it through a laboratory mill with its mill opening set at 0,8 mm and at a temperature of 50 $^{\circ}$ C ± 5 $^{\circ}$ C.
- f) Pass the rolled batch endwise through the rolls six times.
- g) Sheet the batch to approximately 6 mm. Check-weigh the batch (see ISO 2393). If the mass of the batch differs from the theoretical value by more than –1,5 % to +0,5 %, discard the batch and remix.
- h) Remove sufficient material for cure testing.
- i) Sheet the batch to approximately 2,2 mm for preparing test sheets or to the appropriate thickness for preparing ISO ring test pieces in accordance with ISO 37.

¹⁾ This information is given for the convenience of users of this International Standard and does not constitute an endorsement by ISO of this product.

j) Leave the batch for 30 min to 24 h after mixing, if possible, at standard temperature and humidity as defined in ISO 23529.

5.3.2.3 Method A2 — Two-stage mixing with LIM

5.3.2.3.1 Initial mixing procedure

	Duration (min)	Cumulative time (min)
a) Adjust the temperature of the internal mixer to achieve a final mix temperature of 150 °C in about 5 min. Close the discharge door, set the rotor at 8 rad/s (77 r/min), start the rotor, and raise the ram.	0	0
b) Load the rubber, the zinc oxide, the carbon black, the oil, and the stearic acid. Lower the ram.	0,5	0,5
c) Allow the batch to mix.	2,5	3,0
d) Raise the ram and clean the mixer throat and the top of the ram. Lower the ram.	0,5	3,5
e) Discharge the batch when the temperature reaches 150 °C or after 5 min, whichever occurs first.	max. 1,5	5,0

iTeh STANDARD PREVIEW
Total time (max.) 5,0

(standards.iteh.ai)

f) Immediately pass the batch three times through a laboratory mill with its mill opening set at 2,5 mm and at a temperature of 50 °C ± 5 °C. Check-weigh the batch (see ISO 2393). If the mass of the batch differs from the theoretical value by more than -1,5 % to +0,5 %, discard the batch and re-mix.

g) Leave the batch for 30 min to 24 h after mixing, if possible, at standard temperature and humidity as defined in ISO 23529.

5.3.2.3.2 Final mixing procedure

	Duration (min)	Cumulative time (min)
a) Adjust the chamber and rotors to 40 °C \pm 5 °C. Close the discharge gate, start the rotor at 8 rad/s (77 r/min), and raise the ram.	0	0
b) Charge one-half of the batch prepared in <u>5.3.2.3.1</u> , the accelerators and the sulfur, and then the rest of the batch. Lower the ram.	0,5	0,5
c) Allow the batch to mix until a temperature of 110 °C or a total mixing time of 2 min is reached, whichever occurs first. Discharge the batch.	max. 1,5	2,0
Total time (max.)	2,0	

- d) Immediately pass the batch through a laboratory mill with its mill opening set at 0,8 mm and at a temperature of 50 °C \pm 5 °C.
- e) Pass the rolled batch endwise through the rolls six times.
- f) Sheet the batch to approximately 6 mm. Check-weigh the batch (see ISO 2393). If the mass of the batch differs from the theoretical value by more than –1,5 to +0,5 %, discard the batch and re-mix.

- g) Remove sufficient material for curemeter testing.
- h) Sheet the batch to approximately 2,2 mm for preparing test slabs or to the appropriate thickness for preparing ISO ring specimens in accordance with ISO 37.
- i) Leave the batch for 30 min to 24 h after mixing, if possible, at standard temperature and humidity as defined in ISO 23529.

5.3.2.4 Method A3 — Two-stage mixing using a LIM for initial mixing and a mill for final mixing

5.3.2.4.1 Stage 1 — Initial mixing procedure

	Duration (min)	Cumulative time (min)
a) Adjust the temperature of the internal mixer to achieve a final mix temperature of 150°C in about 5 min. Close the discharge door, set the rotor at 8 rad/s (77 r/min), start the rotor, and raise the ram.	0	0
b) Load the rubber, the zinc oxide, the carbon black, the oil, and the stearic acid. Lower the ram.	0,5	0,5
c) Allow the batch to mix.	2,5	3,0
d) Raise the ram and clean the mixer throat and the top of the ram. Lower the ram.	IE ^{0,5}	3,5
e) Discharge the batch when the temperature reaches 150 °C or after 5 min, whichever occurs first.	max. 1,5	5,0
<u>ISO 4097:2014</u>		
https://standards.itah.gi/catalog/standards/sixt/2f2/6f2/6 d2s	5 //32 08/0	

ISO 4097:2014 https://standards.iteh.ai/catalog/standarps/sight-life/finals.35-4d3**3**,6849c07b8f2c0924/iso-4097-2014

- Immediately pass the batch three times through a laboratory mill with its mill opening set at 2,5 mm and at a temperature of 50 °C \pm 5 °C. Check-weigh the batch (see ISO 2393). If the mass of the batch differs from the theoretical value by more than -1,5 % to +0,5 %, discard the batch and re-mix.
- g) Leave the batch for 30 min to 24 h after mixing, if possible, at standard temperature and humidity as defined in ISO 23529.

5.3.2.4.2 Stage 2 — Final mill mixing procedure

A good rolling bank at the nip of the rolls shall be maintained during mixing. If this is not obtained with the nip settings specified hereunder, small adjustments to the mill openings might be necessary.

The standard laboratory mill batch mass, in grams, shall be based on twice the formulation mass.

	Duration (min)	Cumulative time (min)
a) Set the mill temperature at $50^{\circ}\text{C} \pm 5^{\circ}\text{C}$ and the mill opening to 1,5 mm. Band the masterbatch on the fast roll and add the sulfur and accelerators. Do not cut the band until the sulfur and accelerators are completely dispersed. Be sure to add any material that has fallen into the mill-pan.	1,0	1,0
b) Make three 3/4 cuts from each side, allowing 15 s between each cut.	2,0	3,0

	Duration (min)	Cumulative time (min)
c) Cut the batch from the mill. Set the mill opening at 0,8 mm and pass the rolled batch endwise through the rolls six times, introducing it from each end alternately.	2,0	5,0
Total time	5.0	

- d) Sheet the batch to approximately 6 mm. Check-weigh the batch (see ISO 2393). If the mass of the batch differs from the theoretical value by more than -1.5 % to +0.5 %, discard the batch and remix.
- e) Remove sufficient material for curemeter testing.
- f) Sheet the batch to approximately 2,2 mm for preparing test slabs or to the appropriate thickness for preparing ISO ring specimens.
- g) Leave the batch for 2 h to 24 h after mixing, if possible, at standard temperature and humidity as defined in ISO 23529.

5.3.3 Method B — Mill mixing

The standard laboratory mill batch mass, in grams, shall be based on twice the formulation mass. The surface temperature of the rolls shall be maintained at $50 \,^{\circ}\text{C} \pm 5 \,^{\circ}\text{C}$ throughout the mixing.

Mix the zinc oxide, stearic acid, oil, and carbon black together in a suitable container before starting to mix.

NOTE 1 In formulations 1, 2, and 4, some of the foll can be withheld to be added at step 5.3.3 c). https://standards.iteh.ai/catalog/standards/sist/3f346f26-d8a5-4d33-9849-

A good rolling bank at the nip of the rolls shall be maintained during mixing. If this is not obtained with the nip settings specified below, small adjustments to the mill openings might be necessary.

	Duration (min)	Cumulative time (min)
a) Band the rubber on the fast roll with the mill set at 50 °C \pm 5 °C and a 0,7 mm opening.	1,0	1,0
b) Add the mixture of oil, carbon black, zinc oxide and stearic acid evenly across the mill with a spatula.		
NOTE 2 In formulations 1, 2, and 4, some of the oil can be withheld to be added at step c).	13,0	
c) When about half of the mixture is incorporated, open the mill to 1,3 mm and make one 3/4 cut from each side. Then add the remainder of the mixture, opening the mill to 1,8 mm. When all the mixture has been incorporated, make two 3/4 cuts from each side. Be sure to add any material that has fallen into the mill-pan.	[steps b) and c)]	14,0
d) Add the accelerators and sulfur evenly across the rolls, still at an opening of 1,8 mm.	3,0	17,0
e) Make three 3/4 cuts from each side, allowing 15 s between each cut.	2,0	19,0