INTERNATIONAL STANDARD

Second edition 2014-04-01

Quality of dialysis fluid for haemodialysis and related therapies

Qualité des fluides de dialyse pour hémodialyse et thérapies apparentées

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11663:2014</u> https://standards.iteh.ai/catalog/standards/sist/e96928df-1836-41c2-a18eb20090836fcf/iso-11663-2014

Reference number ISO 11663:2014(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11663:2014</u> https://standards.iteh.ai/catalog/standards/sist/e96928df-1836-41c2-a18eb20090836fcf/iso-11663-2014

COPYRIGHT PROTECTED DOCUMENT

© ISO 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Page

Contents

Forew	rord	iv
Introd	luction	V
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Requirements4.1Microbiological contaminants in dialysis fluid4.2Chemical contaminants in dialysis fluid	6 6 7
5	Tests for compliance with microbiological requirements	7
Annex	x A (informative) Rationale for the development and provisions of this International Standard	9
Annex	B (informative) Reference tables from ISO 13959	.12
Biblio	graphy	.15

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11663:2014</u> https://standards.iteh.ai/catalog/standards/sist/e96928df-1836-41c2-a18eb20090836fcf/iso-11663-2014

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 150, *Implants for surgery*, Subcommittee SC 2, *Cardiovascular implants and extracorporeal systems*. ISO 11663:2014

This second edition cancels and replaces the first editions (ISO/11663:2009) which has been technically b20090836fc/iso-11663-2014

Introduction

Haemodialysis patients are directly exposed to large volumes of dialysis fluid, with the dialyser membrane being the only barrier against transfer of hazardous contaminants from the dialysis fluid to the patient. It has long been known that there could be hazardous contaminants in the water and concentrates used to prepare the dialysis fluid. To minimize this hazard, ISO 13958 and ISO 13959 set forth quality requirements for the water and concentrates used to prepare dialysis fluid. However, if the dialysis fluid is not prepared carefully, it could contain unacceptable levels of contaminants even though it is prepared from water and concentrates, meeting the requirements of ISO 13958 and ISO 13959. Further, the dialysis fluid might be used as the starting material for the online preparation of fluids intended for infusion into the patient, for example, in therapies such as online haemodiafiltration. For these reasons, this International Standard for dialysis fluid quality was developed to complement the existing International Standards for water and concentrates, ISO 13959 and ISO 13958, respectively. Guidelines to aid the user in routinely meeting the requirements of this International Standard and ISO 13959 can be found in ISO 23500.

Within these International Standards, measurement techniques current at the time of preparation have been cited. Other standard methods can be used, provided that such methods have been appropriately validated and compared to the cited methods.

This International Standard reflects the conscientious efforts of healthcare professionals, patients, and medical device manufacturers to develop recommendations for the quality of dialysis fluid. This International Standard is directed at the healthcare professionals involved in the management of dialysis facilities and the routine care of patients treated in dialysis facilities, since they are responsible for the final preparation of dialysis fluid. The recommendations contained in this International Standard are not intended for regulatory application.

The requirements of this International Standard aim to help protect haemodialysis patients from adverse effects arising from known chemical and <u>microbiological</u> contaminants that can be found in improperly prepared dialysis fluid. However, the physician in charge of dialysis has the ultimate responsibility for ensuring that the dialysis fluid is correctly formulated and meets the requirements of all applicable quality standards.

The verbal forms used in this International Standard conform to usage described in Annex H of the ISO/IEC Directives, Part 2. For the purposes of this International Standard, the auxiliary verb

- "shall" means that compliance with a requirement or a test is mandatory for compliance with this International Standard,
- "should" means that compliance with a requirement or a test is recommended but is not mandatory for compliance with this International Standard, and
- "may" is used to describe a permissible way to achieve compliance with a requirement or test.

The concepts incorporated in this International Standard should not be considered inflexible or static. The recommendations presented here should be reviewed periodically in order to assimilate increased understanding of the role of dialysis fluid purity in patient outcomes and technological developments.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11663:2014</u> https://standards.iteh.ai/catalog/standards/sist/e96928df-1836-41c2-a18eb20090836fcffiso-11663-2014

Quality of dialysis fluid for haemodialysis and related therapies

1 Scope

This International Standard specifies minimum quality requirements for dialysis fluids used in haemodialysis and related therapies.

This International Standard includes dialysis fluids used for haemodialysis and haemodiafiltration, including substitution fluid for haemodiafiltration and haemofiltration.

This International Standard does not address the requirements for the water and concentrates used to prepare dialysis fluid or the equipment used in its preparation. Those areas are covered by other International Standards.

Sorbent-based dialysis fluid regeneration systems that regenerate and recirculate small volumes of dialysis fluid, systems for continuous renal replacement therapy that use prepackaged solutions, and systems and solutions for peritoneal dialysis are excluded from this International Standard.

2 Normative referencesSTANDARD PREVIEW

The following documents, in whole or in part are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 11663:2014

ISO 13958, Concentrates for haemodialysis and related therapies 836-41c2-a18eb20090836fcf/iso-11663-2014

ISO 13959, Quality of water for haemodialysis and related therapies

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 acid concentrate

A-concentrate

acidified concentrated mixture of salts that, when diluted with dialysis water and bicarbonate concentrate, yields dialysis fluid for use in dialysis

Note 1 to entry: The term "acid" refers to the small amount of acid (for example, acetic acid or citric acid) that is included in the concentrate.

Note 2 to entry: Acid concentrate may contain glucose.

Note 3 to entry: Acid concentrate may be in the form of a liquid, a dry powder, other highly concentrated media, or some combination of these forms.

3.2

action level

concentration of a contaminant at which steps should be taken to interrupt the trend toward higher, unacceptable levels

3.3 bicarbonate concentrate **B**-concentrate

concentrated preparation of sodium bicarbonate that, when diluted with dialysis water and acid concentrate, makes dialysis fluid used for dialysis

Note 1 to entry: Sodium bicarbonate is also known as sodium hydrogen carbonate.

Note 2 to entry: Some bicarbonate concentrates also contain sodium chloride.

Note 3 to entry: Bicarbonate concentrate can be in the form of a liquid or a dry powder.

Note 4 to entry: Dry sodium bicarbonate, without added sodium chloride, is also used in concentrate generators to produce a concentrated solution of sodium bicarbonate used by the dialysis machine to make dialysis fluid.

3.4

central dialysis fluid delivery system

system that produces dialysis fluid from dialysis water and concentrate or powder at a central point and distributes the dialysis fluid from the central point to individual dialysis machines

3.5

chlorine. combined

chlorine that is chemically combined, such as in chloramine compounds

Note 1 to entry: There is no direct test for measuring combined chlorine, but it may be measured indirectly by measuring both total and free chlorine and calculating the difference. **11en STANDARD PRE**

3.6

chlorine, free

(standards.iteh.ai)

chlorine present in water as dissolved molecular chlorine (Cl), hypochlorous acid (HOCI), and hypochlorite ion (OCl⁻) ISO 11663:2014

Note 1 to entry: The three forms of free chlorine existin equilibrium. 663-2014

3.7

chlorine, total

sum of free and combined chlorine

Note 1 to entry: Chlorine can exist in water as dissolved molecular chlorine, hypochlorous acid and/or hypochlorite ion (free chlorine), or in chemically combined forms (combined chlorine). Where chloramine is used to disinfect water supplies, chloramine is usually the principal component of combined chlorine.

3.8

colony-forming unit

CFU

measure of bacterial or fungal cell numbers that theoretically arise from a single cell when grown on solid media

Note 1 to entry: Colonies can also form from groups of organisms when they occur in aggregates.

3.9

concentrate generator

system where the concentrate is delivered to the user as a powder in a container, suitable for attachment to the dialysis machine with which it is intended to be used, and then the powder is converted into a concentrated solution by the dialysis machine

Note 1 to entry: The solution produced by the concentrate generator is used by the dialysis machine to make the final dialysis fluid delivered to the dialyser

3.10

device

individual water purification unit, such as a softener, carbon bed, reverse osmosis unit, or deionizer

Note 1 to entry: This term is synonymous with the term "component" as used by the US Food and Drug Administration (see Reference $[\underline{48}]$).

3.11 dialysis fluid dialysate dialysis solution

aqueous fluid containing electrolytes and, usually, buffer and glucose, which is intended to exchange solutes with blood during haemodialysis

Note 1 to entry: The term "dialysis fluid" is used throughout this International Standard to mean the fluid made from dialysis water and concentrates that is delivered to the dialyser by the dialysis fluid delivery system. Such phrases as "dialysate" or "dialysis solution" are used in place of dialysis fluid in some countries; however, that usage is discouraged to avoid confusion.

Note 2 to entry: The dialysis fluid entering the dialyser is referred to as "fresh dialysis fluid", while the fluid leaving the dialyser is referred to as "spent dialysis fluid".

Note 3 to entry: Dialysis fluid does not include prepackaged parenteral fluids used in some renal replacement therapies, such as haemodiafiltration and haemofiltration.

3.12

dialysis fluid delivery system STANDARD PREVIEW

device that prepares dialysis fluid online from dialysis water and concentrates or that stores and distributes premixed dialysis fluid; **circulates** the dialysis fluid through the dialyser; monitors the dialysis fluid for temperature, conductivity (or equivalent), pressure, flow, and blood leaks; and, prevents dialysis during disinfection or cleaning modes₁₆₆₃:2014

Note 1 to entry: The term includes reservoirs, conduits, proportioning devices for the dialysis fluid, and monitors and associated alarms and controls assembled as a system for the purposes listed above.

Note 2 to entry: The dialysis fluid delivery system might be an integral part of the single-patient dialysis machine or a centralized preparation system which feeds multiple bedside monitoring systems.

Note 3 to entry: Dialysis fluid delivery systems are also known as proportioning systems and dialysis fluid supply systems.

3.13

dialysis water

water that has been treated to meet the requirements of ISO 13959 and which is suitable for use in haemodialysis applications, including the preparation of dialysis fluid, reprocessing of dialysers, preparation of concentrates, and preparation of substitution fluid for online convective therapies

3.14

disinfection

destruction of pathogenic and other kinds of microorganisms by thermal or chemical means

Note 1 to entry: Disinfection is a less lethal process than sterilization, because it destroys most recognized pathogenic microorganisms but does not necessarily destroy all microbial forms.

3.15

endotoxin

major component of the outer cell wall of gram-negative bacteria

Note 1 to entry: Endotoxins are lipopolysaccharides, which consist of a polysaccharide chain covalently bound to lipid A. Endotoxins can acutely activate both humoral and cellular host defences, leading to a syndrome characterized by fever, shaking, chills, hypotension, multiple organ failure, and even death if allowed to enter the circulation in a sufficient dose. [see also *pyrogen* (3.25)].

3.16 endotoxin units EU

units assayed by the Limulus amoebocyte lysate (LAL) test when testing for endotoxins

Note 1 to entry: Because activity of endotoxins depends on the bacteria from which they are derived, their activity is referred to a standard endotoxin.

Note 2 to entry: In some countries, endotoxin concentrations are expressed in international units (IU). Since the harmonization of endotoxin assays, EU and IU are equivalent.

3.17

haemodiafiltration

form of renal replacement therapy in which waste solutes are removed from blood by a combination of diffusion and convection through a high-flux membrane

Note 1 to entry: Diffusive solute removal is achieved using a dialysis fluid stream as in haemodialysis. Convective solute removal is achieved by adding ultrafiltration in excess of that needed to obtain the desired weight loss; fluid balance is maintained by infusing a replacement solution into the blood either before the dialyser (predilution haemodiafiltration), after the dialyser (postdilution haemodiafiltration), or a combination of the two (mixed dilution haemodiafiltration).

3.18

haemodialysis

form of renal replacement therapy in which waste solutes are removed primarily by diffusion from blood flowing on one side of a membrane into dialysis fluid flowing on the other side

Note 1 to entry: Fluid removal that is sufficient to obtain the desired weight loss is achieved by establishing a hydrostatic pressure gradient across the membrane. This fluid removal provides some additional waste solute removal, particularly for solutes with higher molecular weight.

3.19

<u>ISO 11663:2014</u>

haemofiltration https://standards.iteh.ai/catalog/standards/sist/e96928df-1836-41c2-a18e-

form of renal replacement therapy in which waste solutes are removed from blood by convection

Note 1 to entry: Convective transport is achieved by ultrafiltration through a high-flux membrane. Fluid balance is maintained by infusing a replacement solution into the blood either before the haemofilter (predilution haemofiltration), after the haemofilter (postdilution haemofiltration), or a combination of the two (mixed dilution haemofiltration).

Note 2 to entry: There is no dialysis fluid stream in haemofiltration.

3.20 *Limulus* amoebocyte lysate test LAL test assay used to detect endotoxin

Note 1 to entry: The detection method uses the chemical response of an extract from blood cells of a horseshoe crab (*Limulus polyphemus*) to endotoxins.

Note 2 to entry: Amebocyte lysate from a second horseshoe crab, *Tachypleus tridentatus*, can also be used to detect endotoxin.

3.21

manufacturer

entity that designs, manufactures, fabricates, assembles, or processes a finished device

Note 1 to entry: Manufacturers include, but are not limited to, those who perform the functions of contract sterilization, installation, relabelling, remanufacturing, repacking or specification development, and initial distributions of foreign entities performing these functions. The term does not cover preparation of concentrates from prepackaged dry chemicals at a dialysis facility or the handling of bulk concentrates at a dialysis facility after responsibility for the concentrate is transferred from the manufacturer to the user.

3.22

microbiological contamination

contamination with any form of microorganism (e.g. bacteria, yeast, fungi, and algae) or with the byproducts of living or dead organisms such as endotoxins, exotoxins, and cyanobacterial toxins (derived from blue-green algae)

3.23

nonpyrogenic

not eliciting a pyrogen reaction

Note 1 to entry: Historically, the threshold pyrogenic dose of 5 EU/kg/h (the minimum dose that produces fever) has been used to set endotoxin limits of devices and injectable medications.

Note 2 to entry: The volume of fluid administered should not exceed the volume that would result in a total dose of endotoxin of $\geq 5 \text{ EU/kg/h}$.

Note 3 to entry: This definition is applicable for fluids produced by online techniques, e.g. substitution and priming fluids.

Note 4 to entry: The commonly used gel clot method has a sensitivity limit of 0,03 EU/ml.

3.24

proportioning system

apparatus that proportions dialysis water and haemodialysis concentrate to prepare dialysis fluid

3.25

3.26

iTeh STANDARD PREVIEW pyrogen fever-producing substance

standards.iteh.ai)

Note 1 to entry: Pyrogens are most often lipopolysaccharides of gram-negative bacterial origin [see also endotoxin (<u>3.15</u>)].

ISO 11663:2014

https://standards.iteh.ai/catalog/standards/sist/e96928df-1836-41c2-a18eb20090836fcf/iso-11663-2014 sterile

free from viable microorganisms

Note 1 to entry: "Sterile" can be used to describe a packaged solution that was prepared using a terminal sterilization process validated according to the methods of the applicable pharmacopoeia. A terminal sterilization process is commonly defined as one that achieves a sterility assurance level (SAL) of 10^{-6} , i.e. assurance of less than one chance in a million that viable microorganisms are present in the sterilized article.

Note 2 to entry: Alternatively, "sterile" can be used to describe a solution prepared for immediate use by a continuous process, such as filtration, that has been validated according to the methods of the applicable pharmacopoeia to produce a solution free from viable microorganisms for the validated life of the filter.

3.27

substitution fluid

fluid used in haemofiltration and haemodiafiltration treatments which is infused directly into the patient's blood as a replacement for the fluid that is removed from the blood by filtration

Note 1 to entry: Substitution fluid is also referred to as substitution solution or replacement solution.

Note 2 to entry: Substitution fluid can also be used for bolus administration, for priming of an extracorporeal blood circuit, and for returning blood to the patient at the end of a treatment.

3.28

ultrapure dialysis fluid

highly purified dialysis fluid that can be used in place of conventional dialysis fluid

Note 1 to entry: A widely accepted specification of ultrapure dialysis fluid is <0,1 CFU/ml and <0,03 EU/ml.