## INTERNATIONAL STANDARD

First edition 2015-10-15

# Agricultural irrigation equipment — Plastics saddles —

Part 1: Polyethylene pressure pipes

Materiel agricole d'irrigation — Selles de derivation en matiere **iTeh** STANDARD PREVIEW Partie 1: Tuyau en polyethylene utilise sous pression (standards.iteh.ai)

<u>ISO 13460-1:2015</u> https://standards.iteh.ai/catalog/standards/sist/afa015d5-3624-4d78-9d14a313bc16dba3/iso-13460-1-2015



Reference number ISO 13460-1:2015(E)

## iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 13460-1:2015</u> https://standards.iteh.ai/catalog/standards/sist/afa015d5-3624-4d78-9d14a313bc16dba3/iso-13460-1-2015



© ISO 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Page

## Contents

| Forew | ord                                                                                   | iv   |  |  |  |  |
|-------|---------------------------------------------------------------------------------------|------|--|--|--|--|
| 1     | Scope                                                                                 | 1    |  |  |  |  |
| 2     | Normative references                                                                  | 1    |  |  |  |  |
| 3     | Terms and definitions                                                                 |      |  |  |  |  |
| 4     | Materials                                                                             |      |  |  |  |  |
| 5     | Workmanship and appearance2                                                           |      |  |  |  |  |
| 6     | Branch outlet                                                                         |      |  |  |  |  |
| 7     | Material strength test                                                                |      |  |  |  |  |
| 8     | Mechanical and hydraulic characteristics                                              |      |  |  |  |  |
|       | 8.1 General                                                                           | 5    |  |  |  |  |
|       | 8.2 Resistance to short-term internal hydrostatic pressure                            | 5    |  |  |  |  |
|       | 8.3 Resistance to long-term internal hydrostatic pressure                             | 6    |  |  |  |  |
|       | 8.4 Resistance to internal under-pressure                                             | 6    |  |  |  |  |
|       | 8.5 Resistance to pressure during application of a bending moment to the branch outle | et 6 |  |  |  |  |
|       | 8.6 Resistance to sliding of the saddle on the pipe                                   | 7    |  |  |  |  |
|       | 8.6.1 Preparation                                                                     | 7    |  |  |  |  |
|       | 8.6.2 Resistance to rotational sliding                                                | 7    |  |  |  |  |
|       | 8.6.3 Resistance to axial sliding                                                     |      |  |  |  |  |
| 9     | Marking                                                                               | 9    |  |  |  |  |

## (standards.iteh.ai)

ISO 13460-1:2015

https://standards.iteh.ai/catalog/standards/sist/afa015d5-3624-4d78-9d14-a313bc16dba3/iso-13460-1-2015

### Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see <a href="https://www.iso.org/directives">www.iso.org/directives</a>).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see <a href="https://www.iso.org/patents">www.iso.org/patents</a>).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ASO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 23, Tractors and machinery for agriculture and forestry, Subcommittee SC 18, Irrigation and drainage equipment and systems.

This first edition of ISO **13460** and replaces **150 13460** has been technically revised and renumbered. a313bc16dba3/iso-13460-1-2015

## Agricultural irrigation equipment — Plastics saddles —

## Part 1: **Polyethylene pressure pipes**

#### 1 Scope

This part of ISO 13460-1 specifies the required properties and test methods for plastics saddles for assembly on polyethylene (hereinafter "PE") pressure pipes used in above-ground and underground irrigation systems conveying water at temperatures not exceeding 50 °C.

#### 2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 7-1, Pipe threads where pressure-tight joints are made on the threads — Part 1: Dimensions, tolerances and designation **Teh STANDARD PREVIEW** 

ISO 228-1, Pipe threads where pressure-tight joints are not made on the threads — Part 1: Dimensions, tolerances and designation

ISO 1167-1, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure hart of General method d5-3624-4d78-9d14a313bc16dba3/iso-13460-1-2015

ISO 3459, Plastic piping systems — Mechanical joints between fittings and pressure pipes — Test method for leaktightness under negative pressure

ISO 4427-2, Plastics piping systems — Polyethylene (PE) pipes and fittings for water supply — Part 2: Pipes

ISO 8779, Plastics piping systems — Polyethylene (PE) pipes for irrigation — Specifications

ISO 17885, Plastics piping systems — Mechanical fittings for pressure piping systems — Specifications

#### 3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

#### 3.1

saddle

fitting used to connect a branch outlet to a polyethylene pipe through a boring in the wall of the pipe

#### 3.2

#### branch outlet

outlet of a saddle the axis of which is perpendicular to the axis of the pipe on which the saddle is installed

Note 1 to entry: See <u>Figure 1</u>.





a) Without protrusion into the pipe

b) With protrusion into the pipe

#### Figure 1 — Examples of plastics saddles

#### 3.3

#### nominal size

numerical designation used to refer to the size of a saddle which is identical to the nominal diameter of the pipe on which it is intended for assembly

#### 3.4

## nominal pressure

PN

used to classify a saddle which is identical to the nominal pressure of the pipe on which it is intended for assembly

## (standards.iteh.ai)

#### 4 Materials

#### ISO 13460-1:2015

Metal parts of a saddle shall be corresion resistant and ards/sist/afa015d5-3624-4d78-9d14-

All parts of a saddle coming in contact with water shall be resistant to agricultural chemicals used in irrigation, such as fertilizer solutions, plant protection materials and fluids used for removal of blockages in emitters and emitting pipe systems.

Plastics parts of a saddle that are exposed to ultraviolet radiation in working conditions under which the saddle operates shall be resistant to ultraviolet radiation.

Plastics parts that enclose waterways shall be opaque or shall be provided with an opaque cover.

#### 5 Workmanship and appearance

The saddle shall be free of burrs or other features likely to damage the pipe or present a safety hazard during installation. The bore of the saddle outlet shall be free of irregularities which may restrict water flow.

The saddle shall be designed to cause minimum interference to the flow of water in the pipe on which it is installed.

Internal and external surfaces of the saddle shall be clean and free of grooves, pinholes, voids or other features likely to affect the performance and service of the system.

The saddle shall be manufactured at such diameter and within such tolerances that will permit its use with PE pipes in accordance with ISO 4427-2 and ISO 8779.

#### 6 Branch outlet

The branch outlet shall have a threaded connection or another type of connection suitable for connecting a pipe or a fitting.

A threaded connection shall have a thread that conforms to ISO 7-1 or ISO 228-1 as an integral thread or be provided with an adaptor to such a thread.

A plastic female thread bigger than 25,4 mm shall be provided with a metal reinforcing ring.

A metal reinforcing ring is also recommended for smaller plastic female threads.

#### 7 Material strength test

Perform the following pressure test on an injection-moulded tubular test piece with the dimensions shown in <u>Figure 2</u> and made of the same plastics material as the saddle body.

The wall thickness of the test specimen (e), shown in Figure 2, shall not be less than 2,9 mm and not more than 4,6 mm.



Dimensions in millimetres

Test the specimen in accordance with ISO 1167-1 under the test conditions specified in <u>Table 2</u>.

The test specimen shall not suffer fractures or any other type of damage during the test.

| Material       | Temperature | Induced stress | Duration |
|----------------|-------------|----------------|----------|
|                | °C          | σ              | h        |
|                | C           | МРа            |          |
| ADC            | 20          | 38,7           | 1        |
| ADS            | 70          | 4              | 1 000    |
| DE OO          | 20          | 11,4           | 1        |
| PE OU          | 80          | 4              | 1 000    |
| DE 100         | 20          | 14,4           | 1        |
| PE 100         | 80          | 5              | 1 000    |
|                | 20          | 9,9            | 1        |
| PE-RI – Type I | 95          | 3,4            | 1 000    |
|                | 20          | 10,8           | 1        |
| РЕ-КІ – Туре Z | 95          | 3,6            | 1 000    |

Table 1 — Test conditions

| Material   | Temperature                    | Induced stress                                        | Duration        |
|------------|--------------------------------|-------------------------------------------------------|-----------------|
|            | °C                             | σ                                                     | h               |
|            | L                              | МРа                                                   | n               |
| DE V       | 20                             | 12,0                                                  | 1               |
| PE-X       | 95                             | 4,4                                                   | 1 000           |
| DOM C      | 20                             | 59                                                    | 1               |
| POM-C      | 95                             | 6                                                     | 1 000           |
| DOM μ      | 20                             | 63                                                    | 1               |
| РОМ-П      | 60                             | 10                                                    | 1 000           |
| DD R       | 20                             | 16                                                    | 1               |
| PP-D       | 95                             | 2,6                                                   | 1 000           |
| ם מס       | 20                             | 21                                                    | 1               |
| rr-n       | 95                             | 3,5                                                   | 1 000           |
| <br>DD_D   | 20                             | 16                                                    | 1               |
| rr-N       | 95                             | 3,5                                                   | 1 000           |
| DD DCT     | 20                             | 15,0                                                  | 1               |
|            | eh ST <sup>95</sup> NDA        | RD <sup>3</sup> 8REV                                  | 1,000           |
| PVC-U      | (standar                       | 42<br>(S.ife32.21)                                    | 1 000           |
|            | 20                             | 42                                                    | 1 1             |
| PVC-HI     | 20 ISO 134                     | <u>60-1:2015</u><br>32                                | 1 000           |
| https://s  | tandards.iteh.ai/catalog/stanc | lards/sist/afa015d5-3624<br>iso_13460 <b>32.6</b> 015 | 4d78-9d14-<br>1 |
| PVDF       | 95                             | 11,5                                                  | 1 000           |
|            | 20                             | 57,2                                                  | 1               |
| PPSU       | 95                             | 21,3                                                  | 1 000           |
|            | 20                             | 66                                                    | 1               |
| PSU        | 95                             | 9,7                                                   | 1 000           |
|            | 20                             | 15,5                                                  | 1               |
| PB         | 95                             | 6                                                     | 1 000           |
|            | 20                             | 19                                                    | 1 000           |
| PA 11 160  | 80                             | 10                                                    | 165             |
| DA 11 100  | 20                             | 20                                                    | 1 000           |
| PA 11 180  | 80                             | 11,5                                                  | 165             |
| DA 12 160  | 20                             | 19                                                    | 1 000           |
| FA 12 100  | 80                             | 10                                                    | 165             |
| DA 12 190  | 20                             | 20                                                    | 1 000           |
| 1A 12 100  | 80                             | 11,5                                                  | 165             |
| DA12_CE20  | 20                             | 50                                                    | 1               |
| FA12-0F30  | 60                             | 20                                                    | 1 000           |
| DA12_CE50  | 20                             | 50                                                    | 1               |
| 1717-01.20 | 60                             | 20                                                    | 1 000           |

 Table 1 (continued)

| Material  | Temperature | Induced stress | Duration |   |
|-----------|-------------|----------------|----------|---|
|           | °C          | °C             | σ        | h |
|           | L L         | МРа            | 11       |   |
|           | 20          | 50             | 1        |   |
| PA12-GF05 | 60          | 20             | 1 000    |   |
| ECTEE     | 20          | 26             | 40       |   |
|           | 80          | 8              | 170      |   |

 Table 1 (continued)

NOTE If second- or third-party certification is applicable, this test can be omitted if the saddle manufacturer can present to the testing laboratory a satisfactory test report on the material's strength requirement compliance.

#### 8 Mechanical and hydraulic characteristics

#### 8.1 General

Test the specimens in accordance with the tests specified in <u>8.2</u> to <u>8.6</u> with each saddle assembled on a PE pipe. The nominal pressure of the pipe used in the tests shall be equal to or greater than the nominal pressure of the saddle.

If the branch outlet of the saddle has a fitting complying with ISO 17885 for connecting to a PE pipe, perform the pressure tests described in 8.2 to 8.6 with a pipe of the appropriate section and with a minimum free length of 3D measured from the branch outlet (where D is the nominal diameter of the pipe).

### 8.2 Resistance to short-term internal hydrostatic pressure

Assemble the saddle on a PE pipe of hominal diameter equal to the nominal size of the saddle, according to the manufacturer's instructions. The PE pipe shall extend at least three times its nominal diameter from each side of the saddle, as a free length (see Figure 3).

Plug the saddle branch outlet with a plug suited to the shape of the branch outlet connection.

Plug one end of the pipe and fill the complete assembly with water through the other end of the pipe, taking care to ensure that all air is expelled from the system.

Increase the pressure gradually and maintain the test conditions given in <u>Table 2</u>.



Key

1 saddle

