INTERNATIONAL STANDARD

Second edition 1993-12-01

Positive-displacement vacuum pumps — Measurement of performance characteristics —

iTeh STANDARD PREVIEW

(pumping speed)

https://standards.iteh.ai/catalog/standards/sist/291525b1-0f13-4dbd-9441-

e7503d996b9e/iso-1607-1-1993

Pompes primaires volumétriques à vide — Mesurage des caractéristiques fonctionnelles —

Partie 1: Mesurage du débit-volume

Reference number ISO 1607-1:1993(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting VIEW a vote.

International Standard ISO 1607-1 was prepared by Technical Committee ISO/TC 112, Vacuum technology, Sub-Committee SC 3, Measurement of the performance characteristics of vacuum pumps. ISO 1607-1:1993 https://standards.iteh.ai/catalog/standards/sist/291525b1-0f13-4dbd-9441-This second edition cancels and replaces/961theiso-first/-1-edition

(ISO 1607-1:1980), which has been technically revised.

ISO 1607 consists of the following parts, under the general title *Positive-displacement vacuum pumps* — *Measurement of performance characteristics*:

- Part 1: Measurement of volume rate of flow (pumping speed)

- Part 2: Measurement of ultimate pressure

© ISO 1993

Printed in Switzerland

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Introduction

The purpose of ISO 1607 is to ensure that measurements of the performance characteristics of positive-displacement vacuum pumps are, as far as possible, carried out by uniform procedures and under uniform conditions. It is hoped that, as a result, measurements conducted by different manufacturers or in different laboratories, and statements of performance quoted in manufacturers' literature will be on a properly comparable basis to the benefit of both user and manufacturer.

It is envisaged that the complete International Standard will, in due course, deal comprehensively with the measurement of a wide range of performance characteristics of the main types of positive-displacement vacuum pumps. In order, however, that useful agreements of more restricted scope may be implemented with the least possible delay, ISO 1607 is published in parts. (standards.iteh.ai)

<u>ISO 1607-1:1993</u> https://standards.iteh.ai/catalog/standards/sist/291525b1-0f13-4dbd-9441e7503d996b9e/iso-1607-1-1993

iTeh This page Intentionally left blankEVIEW (standards.iteh.ai)

<u>ISO 1607-1:1993</u> https://standards.iteh.ai/catalog/standards/sist/291525b1-0f13-4dbd-9441e7503d996b9e/iso-1607-1-1993

Positive-displacement vacuum pumps — Measurement of performance characteristics —

Part 1:

Measurement of volume rate of flow (pumping speed)

1 Scope

This part of ISO 1607 specifies methods of measuring means of pressure measurement. the volume rate of flow of positive displacement vace **P2.3 ultimate pressure:** Limiting pressure approached asymptotically in the dome, with the gas The pumps considered are those which discharge the second seco

a limiting inlet pressure of less than 100 Pa¹¹ in one07-1:1993 stage.

These pumps may be with or without baffle(s) or so-1607-1-1993 trap(s).

2 Definitions

For the purposes of this part of ISO 1607, the following definitions apply.

2.1 volume rate of flow, pumping speed: Under ideal conditions, the volume of gas which flows in unit time through the pump inlet.

For practical purposes, however, the volume rate of flow (S) of a given pump for a given gas is, by convention, taken to be the quotient of the throughput (Q) of that gas and the equilibrium pressure (p) at a specified position in a given test dome and under specified conditions of operation. Thus

S = Q/p

The units adopted for the volume rate of flow are the cubic metre per hour (m^3/h) or the litre per second (l/s).

2.2 test dome; test header: A chamber of specific form and dimensions, attached to the inlet of the

pump, through which a measured flow of gas may be

admitted to the pump, and which is equipped with

The volume of the test dome (V_D) shall be at least five times the volume swept by the pump during one compression cycle (V_p) . The connection to the inlet of the pump shall consist of an adaptor, the length of which shall not exceed 0,5*D* (see figure 1). The appropriate dome dimensions for pumps of given sizes are indicated in table 1.

3.2 Pressure gauge, calibrated to an accuracy of \pm 5 % for pressures greater than or equal to 1 Pa and of \pm 10 % for lower pressures.

^{3.1} Test dome, cylindrical and of the form shown in figure 1. The axial dimension of the dome is 1,5D, where *D* is the internal diameter, and the test gas entrance is on the axis at a distance *D* from the connecting flange and so arranged that the gas entrance into the dome is in a direction away from the pump mouth. The connection to the gauge for measurements of inlet and ultimate pressures is at a distance 0,5D from the connecting flange with its axis perpendicular to that of the dome. The axis of the test dome shall be perpendicular to the plane of the inlet flange of the pump.

^{1) 100} Pa = 100 N/m² = 1 mbar; 133 Pa = 1 torr

Table 1		
V _p	V _D	D
litres	litres	mm
0 to 0,26	1,3	100
0,26 to 1,1	5,4	160
1,1 to 4,2	21	250
4,2 to 17	84	400
17 to 65	325	630
65 to 260	1 300	1 000

3.3 Test gas

Ambient air shall be used unless otherwise specified.

3.4 Gas-throughput measuring device

The method adopted for measuring the throughput of gas will depend on the throughput required. The accuracy shall reach

- \pm 3 % for throughputs Tegreater Athan A 9,9 × 10⁻¹ Pa·m³/s; a) ±3%
- \pm 5 % for throughputs be 9,9 × 10⁻¹ Pa·m³/s and 9,9 × 10⁻⁵ Pa·m³/s; b) ± 5 %
- c) ± 10 % for lower throughputs/standards.iteh.ai/catalog/standartio/sthe9design-of1pumpl-and-a linear ordinate for the Ideal gas behaviour at 20 °C is assumed. NOTE 1

Test method 4

4.1 Principle

The method adopted is the "constant-pressure" method, in which the pressure at the mouth of the pump is intended to be kept constant during the measuring procedure. In practice, this condition is considered satisfied if the pressure measured in the test dome remains constant.

4.2 **Procedure**

For measurement of the volume rate of flow, the test dome, pressure-measuring gauge and flowmeter shall be fitted to the pump as indicated in clause 3. For the purpose of the test, the pump shall be run with the prescribed charge and grade of fluid and at the rotational speed specified by the manufacturer. The ambient temperature shall be kept constant within \pm 1 °C, for the period of the test, in the range 15 °C to 25 °C unless otherwise specified. The test dome shall be evacuated when isolated from the gas inlet system until, over a period of 1 h, no further pressure drop is observed in the dome and the pump has reached its equilibrium operating temperature. Gas shall then be admitted into the dome in such a manner as to produce the required measurement pressure, and the system shall be allowed to reach a state of pressure equilibrium before measurements are commenced.

The volume rate of flow (pumping speed) shall be measured, starting at the lowest pressure, point-bypoint at different inlet pressures (at least three measurements within one power of ten, i.e. at 2,5; 5 and 10 approximately). For each measurement point, the inlet pressure, ambient atmospheric pressure and the throughput of gas shall be determined. In the case of pumps fitted with a gas ballast facility, the test shall be repeated with full gas ballast flow.

Inlet pressure and input flow of gas shall, as far as possible, be measured simultaneously. If the metering of the input gas takes more than 60 s. a pressure measurement shall be taken for each period of 60 s and the mean value recorded. If the highest and lowest readings differ by more than 10 %, the measurement shall be repeated.

5 **Test results**

The relationship between the inlet pressure and the volume rate of flow shall be shown on a graph using arc a logarithmic abscissa for pressure, covering the range from the ultimate pressure up to atmospheric ISO 1607ptessure, or such other range as may be appropriate

e7503d996b9e/isvolume_rates of flow. The corresponding relationship between the inlet pressure and the throughput of gas shall be shown on a graph using a logarithmic abscissa for the pressure and a logarithmic ordinate for the throughput. In the case of pumps fitted with a gas ballast facility, these curves shall be derived both without gas ballast and with full gas ballast flow.

Test report 6

The test report shall include the following:

- a) type and conditions of operation of all gauges used;
- b) type of gasket used on the pump inlet flange;
- c) type of any baffle(s) and/or trap(s) employed, and their temperatures during the test;
- d) cooling water flowrate;
- e) rotational speed of the pump, and limits of variation during the test;
- f) rate of gas ballast flow, in m³/h (or I/s), if applicable;
- g) ambient temperature and pressure.

Dimensions in millimetres

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 1607-1:1993</u> https://standards.iteh.ai/catalog/standards/sist/291525b1-0f13-4dbd-9441e7503d996b9e/iso-1607-1-1993

UDC 621.522:532.575.2

Descriptors: vacuum apparatus, vacuum pumps, positive displacement pumps, tests, performance evaluation, flow measurement.

Price based on 3 pages